Research Article
BibTex RIS Cite

Askeri Otonom Sistemlerde Blokzincir Tabanlı Veri Güvenliği

Year 2020, , 362 - 368, 30.11.2020
https://doi.org/10.31590/ejosat.824196

Abstract

Yakın dönemde teknolojide yaşanan gelişmeler, askeri operasyonlarda ve diğer kritik askeri iletişimlerde insansız hava araçları (İHA'lar ve SİHA'lar) gibi otonom sistemlerin artan kullanımına olanak sağlamıştır. Otonom sistemlerin kullanımı askeri operasyonları büyük ölçüde kolaylaştırmış, hassas veri toplama ve operasyon ortamına küresel bir bakış sağlamış ve kayıpları azaltmış olsa da, içerdiği yüksek otomasyon seviyesi nedeniyle daha büyük bir siber saldırı yüzeyi yaratmıştır. Bu saldırı yüzeyinin düşmanlar tarafından kullanılması, otonom sistemlerin karar vermesinde kullanılan kritik mesaj içeriğinin manipüle edilmesi yoluyla askeri operasyonlara ciddi şekilde zarar verebilir. Otonom askeri sistemlerin başarılı bir şekilde çalışmasını sağlamak için, toplanan / değiş tokuş edilen veri ve mesajların bütünlüğünü sıkı bir şekilde koruyacak mekanizmaların geliştirilmesi ve her mesajın değişmez bir kaydının sağlanması gerekir. Bu mekanizmalar ayrıca askeri operasyon sırasında veya sonrasında meydana gelen kritik arızalar veya saldırılar altında otonom sistemleri denetlemek için de kullanılabilir olmalıdır. Blokzincir, dağıtık bir ağın parçası olan taraflar arasında değiştirilemez bir etkileşim geçmişi elde etmek için merkezi olmayan bir mimari sağlayan bir teknoloji olarak yakın zamanda ortaya çıkmıştır. Blokzincir şu anda kriptoparalar, tedarik zinciri yönetimi ve e-oylama sistemleri gibi çeşitli alanlarda kullanılırken, aynı zamanda otonom sistemlerde güvenli iletişim sağlama potansiyeline de sahiptir. Bu çalışmada, bir askeri otonom sistem ağındaki İHA'lar ve yer kontrol istasyonları dahil tüm taraflar arasında değiş tokuş edilen mesajların bütünlük güvencesini ve kalıcı bir kaydını garanti eden blokzincir tabanlı bir iletişim mimarisi önerilmiştir. Önerilen güvenli iletişim mimarisi dağıtık sistemlerde sıklıkla rastlanılan siber saldırı türlerine dayanıklılığı açısından incelenmiş, veri bütünlüğünü bozma ve kimlik denetimini yanıltma saldırılarına karşı koruma sağladığı gösterilmiştir. Blokzincir tabanlı bu mimari, askeri ortamlarda son derece güvenilir iletişimi sağlama ve bu sistemleri veri içeriği manipülasyonu yoluyla yanıltmayı amaçlayan siber saldırılara karşı direnç artırmayı vaat etmektedir

References

  • Aitzhan, N. Z. & Svetinovic, D. (2016). Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Transactions on Dependable and Secure Computing, 15 (5), 840-852.
  • Angin, P., Mert, M. B., Mete, O., Ramazanli, A., Sarica, K. & Gungoren, B. (2018). A blockchain-based decentralized security architecture for IoT. International Conference on Internet of Things (ICIOT), June 25-30, Seattle, WA, USA, 3-18.
  • Aydar, M. & Çetin, S. C. (2020). Blokzincir Teknolojisinin Sağlık Bilgi Sistemlerinde Kullanımı. Avrupa Bilim ve Teknoloji Dergisi, (19), 533-538.
  • Bahtiyar, Ş., Paksoy, O., Güldöşüren, E. & Pekel, M. E. (2020). Öğrenciler Arasında Blokzincir Farkındalığı Üzerine Bir Araştırma. Avrupa Bilim ve Teknoloji Dergisi, (18), 424-434.
  • Castro, M. & Liskov, B. (1999). Practical Byzantine Fault Tolerance. USENIX Symposium on Operating Systems Design and Implementation (OSDI), 22-25 February, New Orleans, LA, USA, 173-186.
  • Christidis, K. & Devetsikiotis, M. (2016). Blockchains and smart contracts for the Internet of Things, IEEE Access, 4, 2292–2303.
  • Di Pietro, R., Salleras, X., Signorini, M. & Waisbard, E. (2018). A Blockchain-based Trust System for the Internet of Things. 23nd ACM on Symposium on Access Control Models and Technologies, 13-15 June, Indianapolis, IN, USA, 77-83.
  • Fernandes, N. C. & Duarte, O. C. M. B. (2011). A lightweight group-key management protocol for secure ad-hoc-network routing. Computer Networks, 55 (3), 759-778.
  • Hofmann, E. & Johnson, M. (2016). Supply chain finance–some conceptual thoughts reloaded. International Journal of Physical Distribution & Logistics Management, 46 (4), 1–8.
  • Jensen, I. J., Selvaraj, D. F. & Ranganathan, P. (2019). Blockchain technology for networked swarms of unmanned aerial vehicles (UAVs). IEEE International Symposium on A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), 10-12 June, Washington, DC, USA, 1-7.
  • Kishigami, J., Fujimura, S., Watanabe, H., Nakadaira, A. & Akutsu, A. (2015). The blockchain-based digital content distribution system. 5th IEEE International Conference on Big Data and Cloud Computing, 26-28 August, Dalian, China, 187–190.
  • Laurence, T. (2017). Blockchain for Dummies. Hoboken, NJ, USA: For Dummies.
  • Lee, B. & Jong-Hyouk, L. (2016). Blockchain-based secure firmware update for embedded devices in an Internet of Things environment. The Journal of Supercomputing, 73 (3), 1152–1167.
  • Moniz, H. (2017). Istanbul Byzantine Fault Tolerance. Available: https://github.com/ethereum/EIPs/issues/650 [Accessed: 10 October 2020].
  • Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Available: https://bitcoin.org/bitcoin.pdf. [Accessed: 10 October 2020].
  • Sudhan, A. & Nene, M. J. (2017). Employability of blockchain technology in defence applications. International Conference on Intelligent Sustainable Systems (ICISS), 7-8 December, Palladam, India, 630-637.
  • Tosh, D. K., Shetty, S., Foytik, P., Njilla, L. & Kamhoua, C.A. (2018). Blockchain-empowered secure Internet-of-Battlefield Things (IoBT) architecture. IEEE Military Communications Conference (MILCOM), 29-31 October, Los Angeles, CA, USA, 593-598.
  • Wrona, K. & Jarosz, M. (2019). Use of blockchains for secure binding of metadata in military applications of IoT. IEEE World Forum on Internet of Things (WF-IoT), 15-18 April, Limerick, Ireland, 213-218.
  • Yue, X., Wang, H., Jin, D., Li, M. & Jiang, W. (2016). Healthcare data gateways: Found healthcare intelligence on blockchain with novel privacy risk control. Journal of Medical Systems, 40 (10), 218.

Blockchain-Based Data Security in Military Autonomous Systems

Year 2020, , 362 - 368, 30.11.2020
https://doi.org/10.31590/ejosat.824196

Abstract

Advances in technology have enabled the increased use of autonomous systems such as unmanned aerial vehicles (UAVs) in military operations and other critical military communications. While the use of autonomous systems has greatly facilitated military operations, provided a global view of the operational environment and eased sensitive data collection, making possible reduced casualties, it has also created a greater cyber attack surface due to its high level of automation. The existence of adversaries targeting this attack surface can seriously damage military operations by tampering with critical message content used in autonomous systems decision making. In order to ensure the successful operation of autonomous military systems, mechanisms must be developed to strictly protect the integrity of the collected / exchanged data and messages, and an immutable record of each message must be provided. These mechanisms should also be used to control autonomous systems under critical failures or attacks occurring during or after military operations. Blockchain has recently emerged as a technology that provides a decentralized architecture to achieve an unchangeable history of interactions between parties that are part of a distributed network. While blockchain is currently used in various fields such as cryptocurrencies, supply chain management and e-voting systems, it also has the potential to provide secure communication in autonomous systems. In this study, a blockchain-based communication architecture is proposed that guarantees integrity assurance and permanent recording of messages exchanged between all parties, including UAVs and ground control stations, in a military autonomous system network. The proposed secure communication architecture has been theoretically evaluated in terms of its resistance to the types of cyber attacks frequently encountered in distributed systems, and it has been shown to provide protection against attacks that compromise data integrity as well as spoofed authentication attempts. The proposed blockchain-based architecture is promising to increase the resilience of military autonomous systems against cyberattacks that aim to hurt the success of military operations through data content manipulation.

References

  • Aitzhan, N. Z. & Svetinovic, D. (2016). Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Transactions on Dependable and Secure Computing, 15 (5), 840-852.
  • Angin, P., Mert, M. B., Mete, O., Ramazanli, A., Sarica, K. & Gungoren, B. (2018). A blockchain-based decentralized security architecture for IoT. International Conference on Internet of Things (ICIOT), June 25-30, Seattle, WA, USA, 3-18.
  • Aydar, M. & Çetin, S. C. (2020). Blokzincir Teknolojisinin Sağlık Bilgi Sistemlerinde Kullanımı. Avrupa Bilim ve Teknoloji Dergisi, (19), 533-538.
  • Bahtiyar, Ş., Paksoy, O., Güldöşüren, E. & Pekel, M. E. (2020). Öğrenciler Arasında Blokzincir Farkındalığı Üzerine Bir Araştırma. Avrupa Bilim ve Teknoloji Dergisi, (18), 424-434.
  • Castro, M. & Liskov, B. (1999). Practical Byzantine Fault Tolerance. USENIX Symposium on Operating Systems Design and Implementation (OSDI), 22-25 February, New Orleans, LA, USA, 173-186.
  • Christidis, K. & Devetsikiotis, M. (2016). Blockchains and smart contracts for the Internet of Things, IEEE Access, 4, 2292–2303.
  • Di Pietro, R., Salleras, X., Signorini, M. & Waisbard, E. (2018). A Blockchain-based Trust System for the Internet of Things. 23nd ACM on Symposium on Access Control Models and Technologies, 13-15 June, Indianapolis, IN, USA, 77-83.
  • Fernandes, N. C. & Duarte, O. C. M. B. (2011). A lightweight group-key management protocol for secure ad-hoc-network routing. Computer Networks, 55 (3), 759-778.
  • Hofmann, E. & Johnson, M. (2016). Supply chain finance–some conceptual thoughts reloaded. International Journal of Physical Distribution & Logistics Management, 46 (4), 1–8.
  • Jensen, I. J., Selvaraj, D. F. & Ranganathan, P. (2019). Blockchain technology for networked swarms of unmanned aerial vehicles (UAVs). IEEE International Symposium on A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), 10-12 June, Washington, DC, USA, 1-7.
  • Kishigami, J., Fujimura, S., Watanabe, H., Nakadaira, A. & Akutsu, A. (2015). The blockchain-based digital content distribution system. 5th IEEE International Conference on Big Data and Cloud Computing, 26-28 August, Dalian, China, 187–190.
  • Laurence, T. (2017). Blockchain for Dummies. Hoboken, NJ, USA: For Dummies.
  • Lee, B. & Jong-Hyouk, L. (2016). Blockchain-based secure firmware update for embedded devices in an Internet of Things environment. The Journal of Supercomputing, 73 (3), 1152–1167.
  • Moniz, H. (2017). Istanbul Byzantine Fault Tolerance. Available: https://github.com/ethereum/EIPs/issues/650 [Accessed: 10 October 2020].
  • Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Available: https://bitcoin.org/bitcoin.pdf. [Accessed: 10 October 2020].
  • Sudhan, A. & Nene, M. J. (2017). Employability of blockchain technology in defence applications. International Conference on Intelligent Sustainable Systems (ICISS), 7-8 December, Palladam, India, 630-637.
  • Tosh, D. K., Shetty, S., Foytik, P., Njilla, L. & Kamhoua, C.A. (2018). Blockchain-empowered secure Internet-of-Battlefield Things (IoBT) architecture. IEEE Military Communications Conference (MILCOM), 29-31 October, Los Angeles, CA, USA, 593-598.
  • Wrona, K. & Jarosz, M. (2019). Use of blockchains for secure binding of metadata in military applications of IoT. IEEE World Forum on Internet of Things (WF-IoT), 15-18 April, Limerick, Ireland, 213-218.
  • Yue, X., Wang, H., Jin, D., Li, M. & Jiang, W. (2016). Healthcare data gateways: Found healthcare intelligence on blockchain with novel privacy risk control. Journal of Medical Systems, 40 (10), 218.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Pelin Angın 0000-0002-6419-2043

Publication Date November 30, 2020
Published in Issue Year 2020

Cite

APA Angın, P. (2020). Blockchain-Based Data Security in Military Autonomous Systems. Avrupa Bilim Ve Teknoloji Dergisi362-368. https://doi.org/10.31590/ejosat.824196