Research Article
BibTex RIS Cite

Akıllı Trafik Sistemlerinde(ITS), Bluetooth Sensör Verileri Yardımıyla Seyahat Süresi Tahmini Gerçekleştirme

Year 2020, , 522 - 529, 05.10.2020
https://doi.org/10.31590/ejosat.829619

Abstract

Trafik yoğunluğu yönetimi için seyahat süresi önemli bir rol oynar. Bu süreyi saptayabilecek yöntemlerden biri de bluetooth teknolojisidir. Bu yöntemle toplanan bluetooth verileri ile; trafik izleme, belirli bir rotadaki araçları belirleyebilme ve seyahat süresi gibi bilgiler elde edilebilmektedir. Bluetooth teknolojisi ile seyahat süresi verilerini etkileyen belirli özellikler analiz edilmiştir. Günümüzde aktif olarak kullanılan bluetooth sensörleri aracılığıyla, otoyol seyahat süresi yeni ve etkili bir veri toplama aracı olarak kullanılabilmektedir. Merkezi kontrol yazılım sistemi, merkezi konumda verileri toplamak, biçimlendirmek, araçlardaki verileri işlemek ve sürücülere sunmak amacıyla bütünsel bir sistem içermektedir. Merkezi sistem tasarımı, bir veri kaynaştırma işlemi yoluyla, bir dizi kaynaktan örneğin sensorlerden gelen veriler doğrultusunda ilgili otoyol üzerinde yine sisteme bağlı olan trafik bilgilendirme mesaj işaretlerine (VMS) tanımlanan senaryolar, metin mesaj ve görseller olmak üzere sürücüye ilgili tıkanık yol verilerini sunmak için kullanılabilmektedir. Hem ortalama hem de varyans olmak üzere seyahat süresi dağılım bilgilerinin sağlanması, sürücülerin zamanında ulaşma olasılığının yüksek olması ve güvenilir yol seçimlerinde daha etkili bir rol oynayabilmektedir. Seyahat süresi akışını belirleyebilmek için dağınık toplanan verileri, mesafe detektörleriyle birleştirerek homojen olmayan bir veri füzyon takibi yapılmaktadır. Yapılan çalışmada tercih edilen bu yöntemle, yol seyahat süresi akışları sensörler yardımıyla tespit edilmektedir. Sensör bulundurmayan yolların ise seyahat süresi tespiti, GPS tabanlı servis sunucularının verilerinden elde edilmektedir. Seyahat süresi akışında ek olarak Dempster-Shafer teorisi, mesafe sensörlerinden elde edilen seyahat süresi sonuçları ile birleştirilmiştir. Elde edilen seyahat süresi sonucuna bakarak, yol seyahat süresi dağılımlarını iyileştirme yöntemi geliştirilmiştir.

Supporting Institution

KONYA TEKNİK ÜNİVERSİTESİ

Thanks

Değerli katkılarından ötürü Dr. Öğretim üyesi Levent Civcik hocama ve makalemizi hazırlamamızda çok desteği bulunan kıymetli arkadaşım Tutku Özden'e teşekkürü borç bilirim.

References

  • Haghani A, Hamedi M, Sadabadi KF, Young S, Tarnoff P (2010) Data collection of freeway travel time ground truth with Bluetooth sensors, no. 2160, transportation research record, transportation research board of the national academies, Washington, D.C, pp 60–68
  • Young S (2008) Bluetooth traffic monitoring technology: concept of operation and deployment guidelines. University of Maryland— Centre for Advanced Transportation Technology, Maryland
  • Coifman B, Kim S (2009) Speed estimation and length based vehicle classification from freeway single-loop detectors. Transp Res Part C Emerg Technol 17:349–364
  • Coifman B, Krishnamurthy S (2007) Vehicle reidentification and travel time measurement across freeway junctions using the existing detector infrastructure. Transp Res Part C Emerg Technol 15(3):135–153
  • Bhaskar A, Qu M, Nantes A, Miska M, Chung E (2015) Is bus overrepresented in Bluetooth MAC scanner data? Is MAC-ID really unique? Int J Intell Transp Syst Res 13(2):119–130
  • Cortes C, Lavanya R, Oh JS, Jayakrishnan R (2002) Generalpurpose methodology for estimating link travel time with multiple- point detection of traffic. Transp Res Rec J Transp Res Board 1802:181–189
  • Dailey DJ (1999) A statistical algorithm for estimating speed from single loop volume and occupancy measurements. Transp Res Part B Methodol 33(5):313–322
  • Wang Y, Nihan NL (2003) Can single-loop detectors do the work of dual-loop detectors? J Transp Eng 129(2):169–176
  • Qian QQ, Lin S, He ZY, Li XP (2012) Travelling wave timefrequency characteristic-based fault location method for transmission lines. Gener Transm Distrib IET 6(8):764–772
  • Sharma A, Bullock D, Bonneson J (2007) Input-output and hybrid techniques for real-time prediction of delay and maximum queue length at signalized intersections. Transp Res Rec J Transp Res Board 2035:69–80

Travel Time Estimation with The Data of Bluetooth Sensors in Intelligent Traffic Systems (ITS)

Year 2020, , 522 - 529, 05.10.2020
https://doi.org/10.31590/ejosat.829619

Abstract

Travel time plays a major role in handling the traffic rate. Bluetooth technology is one of the approaches this time observable. Traffic tracking, vehicle determination on a certain route, and travel time information can be obtaine dusing the bluetooth data gathered using this tool. The Bluetooth technology will be used to analyze certain features affecting travel time results. Highway travel time can be used as a new and efficient data collection tool through the bluetooth sensors which are widely used today. The central control software system consists of a comprehensive system for storing and organizing data at a central location, processing data in vehicles and displaying it to drivers. The central system architecture can be used to display congested road data to the driver, including scenarios, text messages and visuals, identified by traffic information message signs (VMS), which are also linked to the system on the particular highway via a data fusion process in line with data from a variety of sources, for example sensors. Providing information about travel time distribution, both average and variance, will play a more effective role in drivers' high likelihood of arriving on time and in selecting efficient routes. In order to determine the travel time flow, an inhomogeneous data fusion tracking is performed by combining the scattered collected data with distance detectors. With this method preferred in the research, road travel time flows are determined with the help of sensors. The travel time of the roads without sensors is obtained from the data of GPS-based service providers. In addition to the travel time flow, the Dempster-Shafer theory is combined with the travel time results from the distance sensors. Based on the travel time results obtained, the method of improvement in travel time flow has been developed.

References

  • Haghani A, Hamedi M, Sadabadi KF, Young S, Tarnoff P (2010) Data collection of freeway travel time ground truth with Bluetooth sensors, no. 2160, transportation research record, transportation research board of the national academies, Washington, D.C, pp 60–68
  • Young S (2008) Bluetooth traffic monitoring technology: concept of operation and deployment guidelines. University of Maryland— Centre for Advanced Transportation Technology, Maryland
  • Coifman B, Kim S (2009) Speed estimation and length based vehicle classification from freeway single-loop detectors. Transp Res Part C Emerg Technol 17:349–364
  • Coifman B, Krishnamurthy S (2007) Vehicle reidentification and travel time measurement across freeway junctions using the existing detector infrastructure. Transp Res Part C Emerg Technol 15(3):135–153
  • Bhaskar A, Qu M, Nantes A, Miska M, Chung E (2015) Is bus overrepresented in Bluetooth MAC scanner data? Is MAC-ID really unique? Int J Intell Transp Syst Res 13(2):119–130
  • Cortes C, Lavanya R, Oh JS, Jayakrishnan R (2002) Generalpurpose methodology for estimating link travel time with multiple- point detection of traffic. Transp Res Rec J Transp Res Board 1802:181–189
  • Dailey DJ (1999) A statistical algorithm for estimating speed from single loop volume and occupancy measurements. Transp Res Part B Methodol 33(5):313–322
  • Wang Y, Nihan NL (2003) Can single-loop detectors do the work of dual-loop detectors? J Transp Eng 129(2):169–176
  • Qian QQ, Lin S, He ZY, Li XP (2012) Travelling wave timefrequency characteristic-based fault location method for transmission lines. Gener Transm Distrib IET 6(8):764–772
  • Sharma A, Bullock D, Bonneson J (2007) Input-output and hybrid techniques for real-time prediction of delay and maximum queue length at signalized intersections. Transp Res Rec J Transp Res Board 2035:69–80
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Levent Civcik 0000-0002-4580-8164

Semih Koçak 0000-0002-0508-1685

Publication Date October 5, 2020
Published in Issue Year 2020

Cite

APA Civcik, L., & Koçak, S. (2020). Travel Time Estimation with The Data of Bluetooth Sensors in Intelligent Traffic Systems (ITS). Avrupa Bilim Ve Teknoloji Dergisi522-529. https://doi.org/10.31590/ejosat.829619