Research Article
BibTex RIS Cite

Klorit İyonu İçin Tetiklenmiş Floresans Özelliğe Sahip Bir Kimyasal Sensör Olarak Benzotiyazol Grubu Taşıyan Kaliksaren Sentezi

Year 2021, , 486 - 492, 31.01.2021
https://doi.org/10.31590/ejosat.838144

Abstract

Klorit anyonunun sulu çözeltilerdeki tespitine yönelik olarak, kaliks[4]aren-benzotiyazol platformuna dayalı bir floresans probu rasyonel bir şekilde tasarlandı ve sentezlendi. Bu sensör adayı, HRMS analizi ile birlikte FTIR, floresans, 1H- ve 13C-NMR gibi çeşitli spektroskopik teknikler aracılığıyla karakterize edildi. Fotofiziksel karakterizasyon deneyleri sırasında, sentezlenen sensör adayının zayıf bir floresans sergilediği, klorit tespiti sonucu ise hassas tespiti kolaylaştıran güçlü bir mavi floresans oluşturduğu görüldü. Bunun yanı sıra, ilgili klorit probu, test edilen diğer iyonlar arasında daha doğru tespiti mümkün kılan büyük bir Stokes kayması (158 nm) ile 242 nm değerinde büyük bir yalancı Stokes kaymasına sahiptir. Klorit anyonunun klor dioksitten indirgeme sonucu oluştuğu ve birçok ülke tarafından düzenlenen klorit iyonu konsantrasyon aralığının yerinde izlenmesinin önemi göz önünde bulundurulduğunda, sensörümüzün günlük izleme gereksinimlerini karşılamak için alternatif bir yöntem olarak uygun bir algılama seçeneği sunduğu apaçık ortadadır.

Supporting Institution

Uşak Üniversitesi

Project Number

2018/SB002

References

  • Pezzatini, G., Midili, I., Toti, G., Loglio, F., Innocenti, M. (2004). Determination of chlorite in drinking water by differential pulse voltammetry on graphite. Analytical and Bioanalytical Chemistry, 380(4), 650–657.
  • Lutze, H. V. (2016). Water, 6. Treatment by oxidation processes. In Wiley-VCH (Ed.), Ullmann's Encyclopedia of Industrial Chemistry (pp. 1–16). Wiley-VCH Verlag GmbH & Co. KGaA.
  • Henderson, R., Carlson, K., Gregory, D. (2001). The impact of ferrous ion reduction of chlorite ion on drinking water process performance. Water Research, 35(18), 4464–4473.
  • Herman, M., Wieczorek, M., Matuszek, M., Tokarczyk, J., Stafinski, M., Koscielniak, P. (2006). Determination of chlorite in drinking water and related aspects of environment protection. Journal of Elementology, 11(4), 449–455.
  • Chang, C.-Y., Hsieh, Y.-H., Hsu, S.-S., Hu, P.-Y., Wang, K.-H. (2000). The formation of disinfection by-products in water treated with chlorine dioxide. Journal of Hazardous Materials, 79(1–2), 89–102.
  • Gan, W., Huang, H., Yang, X., Peng, Z., Chen, G. (2016). Emerging investigators series: Disinfection byproducts in mixed chlorine dioxide and chlorine water treatment. Environmental Science: Water Research & Technology, 2(5), 838–847.
  • Padhi, R. K., Subramanian, S., Satpathy, K. K. (2019). Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO2‾, and ClO3‾) during treatment of different source water with chlorine and chlorine dioxide. Chemosphere, 218, 540–550.
  • Myers, J. N., Steinecker, W. H., Sandlin, Z. D., Cox, J. A., Gordon, G., Pacey, G. E. (2012). Development of an automated on-line electrochemical chlorite ion sensor. Talanta, 94, 227–231.
  • Health Canada (2020). Guidelines for Canadian Drinking Water Quality–Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch. https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/ pdf/pubs/water-eau/sum_guide-res_recom/summary-table-EN-2020-02-11.pdf
  • Health Canada (2008). Guidelines for Canadian Drinking Water Quality: Guideline Technical Document–Chlorite and Chlorate (Publication No. H128-1/08-549E). Water Quality and Health Bureau, Healthy Environments and Consumer Safety Branch. https://www.canada.ca/content/dam/canada/health-canada/migration/healthy-canadians/publications/healthy-living-vie-saine/ water-chlorite-chlorate-eau/alt/water-chlorite-chlorate-eau-eng.pdf
  • World Health Organization (2017). Guidelines for Drinking-water Quality: fourth edition incorporating the first addendum. https://www.who.int/publications/i/item/9789241549950
  • Hoigne, J., Bader, H. (1994). Kinetics of reactions of chlorine dioxide (OClO) in water–I. Rate constants for inorganic and organic compounds. Water Research, 28(1), 45–55.
  • Al-Zahrani, E., Soomro, M. T., Bashami, R. M., Ur-Rehman, A., Danish, E., Ismail, I. M. I., Aslam, M., Hameed, A. (2016). Fabrication and performance of magnetite (Fe3O4) modified carbon paste electrode for the electrochemical detection of chlorite ions in aqueous medium. Journal of Environmental Chemical Engineering, 4(4A), 4330–4341.
  • Teh, H. B., Yau-Li, S. F. (2015). Simultaneous determination of bromate, chlorite and haloacetic acidsby two-dimensional matrix elimination ion chromatography withcoupled conventional and capillary columns. Journal of Chromatography A, 1383, 112–120.
  • Zhu, B., Zhong, Z., Yao, J. (2006). Ion chromatographic determination of trace iodate, chlorite, chlorate, bromide, bromate and nitrite in drinking water using suppressed conductivity detection and visible detection. Journal of Chromatography A, 1118(1), 106–110.
  • Kang, C.-Y., Jiang, Z.-L., Xi, D.-L., He, X.-C. (2006). A novel, simple and sensitive resonance scattering spectral method for the determination of chlorite in water by means of rhodamine B. Journal of Environmental Sciences, 18(5), 1000–1003.
  • Prince, L. A. (1964). Determination of chloride, hypochlorite, chlorite, chlorate, perchlorate, and chlorine dioxide in composite mixtures. Analytical Chemistry, 36(3), 613–616.
  • Cubuk, O., Colak, I., Özdokur, K. V., Caglar, B., Coldur, F., Topcu, C. (2019). Voltammetric detection of chlorite ion using carbon paste sensor modified with N-cetylpyridinium–bentonite. International Journal of Environmental Analytical Chemistry, 99(4), 343–356.
  • Casella, I. G., Contursi, M. (2005). Electrochemical and spectroscopic characterization of a tungsten electrode as a sensitive amperometric sensor of small inorganic ions. Electrochimica Acta, 50(20), 4146–4154.
  • Praus, P. (2004). Determination of chlorite in drinking water by on-line coupling of capillary isotachophoresis and capillary zone electrophoresis. Talanta, 62(5), 977–982.
  • Ohura, H., Imato, T., Yamasaki, S. (1999). Simultaneous potentiometric determination of ClO3‾ – ClO2‾ and ClO3‾ – HClO by flow injection analysis using Fe(III)–Fe(II) potential buffer. Talanta, 49(5), 1003–1015.
  • Liu, Y., Sun, Y., Du, J., Lv, X., Zhao, Y., Chen, M., Wang, P., Guo, W. (2011). Highly sensitive and selective turn-on fluorescent and chromogenic probe for Cu2+ and ClO‾ based on a N-picolinyl rhodamine B-hydrazide derivative. Organic & Biomolecular Chemistry, 9(2), 432–437.
  • Jiang, Q., Jing, Y., Ni, Y., Gao, R., Zhou, P. (2020). Potentiality of carbon quantum dots derived from chitin as a fluorescent sensor for detection of ClO‾. Microchemical Journal, 157, Article 105111.
  • Yang, Y., Gao, C.-Y., Chen, J., Zhang, N., Dong, D. (2016). A pyrene-based fluorescent and colorimetric chemodosimeter for the detection of ClO‾ ions. Analytical Methods, 8(4), 805–809.
  • Shiraishi, Y., Yamada, C., Hirai, T. (2019). A coumarin–dihydroperimidine dye as a fluorescent chemosensor for hypochlorite in 99% water. RSC Advances, 9(49), 28636–28641.
  • Wang, W., Ning, J.-Y., Liu, J.-T., Miao, J.-Y., Zhao, B.-X. (2019). A mitochondria-targeted ratiometric fluorescence sensor for the detection of hypochlorite in living cells. Dyes and Pigments, 171, Article 107708.
  • Li, J., Huo, F., Yin, C. (2014). A selective colorimetric and fluorescent probe for the detection of ClO‾ and its application in bioimaging. RSC Advances, 4(84), 44610–44613.
  • Zheng, X., Fan, R., Xing, K., Zhu, K., Wang, P., Yang, Y. (2020). Smart cationic coordination polymer: A single-crystal-to-single-crystal approach for simultaneous detection and removal of perchlorate in aqueous media. Chemical Engineering Journal, 380, Article 122580.
  • Zhong, X., Yang, Q., Chen, Y., Jiang, Y., Dai, Z. (2020). Aggregation-induced fluorescence probe for hypochlorite imaging in mitochondria of living cells and zebrafish. Journal of Materials Chemistry B, 8(33), 7375–7381.
  • Dahal, D., McDonald, L., Bi, X., Abeywickrama, C., Gombedza, F., Konopka, M., Paruchuri, S., Pang, Y. (2017). An NIR-emitting lysosome-targeting probe with large Stokes shift via coupling cyanine and excited-state intramolecular proton transfer. Chemical Communications, 53(26), 3697–3700.
  • Tseng, H.-W., Liu, J.-Q., Chen, Y.-A., Chao, C.-M., Liu, K.-M., Chen, C.-L., Lin, T.-C., Hung, C.-H., Chou, Y.-L., Lin, T.-C., Wang, T.-L., Chou, P.-T. (2015). Harnessing excited-state intramolecular proton-transfer reaction via a series of amino-type hydrogen-bonding molecules. Journal of Physical Chemistry Letters, 6(8), 1477–1486.
  • Sakai, R., Satoh, T., Kakuchi, T. (2017). Polyacetylenes as colorimetric and fluorescent chemosensor for anions. Polymer Reviews, 57(1), 160–175.
  • Pur, F. N. (2020). Calix[4]API‑s: fully functionalized calix[4]arene‑based facial active pharmaceutical ingredients [in-press]. Molecular Diversity, https://doi.org/10.1007/s11030-020-10042-0.
  • Kumar, R., Sharma, A., Singh, H., Suating, P., Kim, H. S., Sunwoo, K., Shim, I., Gibb, B. C., Kim, J. S. (2019). Revisiting fluorescent calixarenes: From molecular sensors to smart materials. Chemical Reviews, 119(16), 9657–9721.
  • Rodell, C. B., Mealy, J. E., Burdick, J. A. (2015). Supramolecular guest-host interactions for the preparation of biomedical materials. Bioconjugate Chemistry, 26(12), 2279–2289.
  • Naseer, M. M., Ahmed, M., Hameed, S. (2017). Functionalized calix[4]arenes as potential therapeutic agents. Chemical Biology & Drug Design, 89(2), 243–256.
  • Kiegiel, K., Steczek, L., Zakrzewska-Trznadel, G. (2013). Application of calixarenes as macrocyclic ligands for uranium(VI): A review. Journal of Chemistry, 2013, Article 762819.
  • Fang-Lu, F., Jin-Qiu, J., Xue-Mei, C. (2015). Synthesis, crystal structure and fluorescent properties of a novel benzothiazole-derived fluorescent probe for Zn2+. Journal of Chemical Research, 39(11), 661–664.

Synthesis of Benzothiazole Bearing Calixarene as a Chemical Sensor with Triggered Fluorescence Property for Chlorite Ion

Year 2021, , 486 - 492, 31.01.2021
https://doi.org/10.31590/ejosat.838144

Abstract

A fluorescence probe based on calix[4]arene-benzothiazole platform was rationally designed and synthesized for the detection of chlorite ion in aqueous solution. The sensor candidate was characterized by such spectroscopic techniques as FTIR, fluorescence, 1H- and 13C-NMR along with HRMS analysis. During the photophysical characterization experiments, it was observed that the synthesized sensor candidate exhibited weak fluorescence while its chlorite detection created a strong blue fluorescence facilitating sensitive detection. Besides, the related chlorite probe possessed a large Stokes shift (158 nm) with large pseudo Stoke’s shift within the value of 242 nm that enables more accurate detection among other tested ions. Considering that chlorite anion is formed from chlorine dioxide as a result of reduction, and the importance of on-site monitoring of the concentration range regulated by many countries, it is obvious that our sensor has presented a convenient detection option as an alternative method to fulfil the daily monitoring requirements.

Project Number

2018/SB002

References

  • Pezzatini, G., Midili, I., Toti, G., Loglio, F., Innocenti, M. (2004). Determination of chlorite in drinking water by differential pulse voltammetry on graphite. Analytical and Bioanalytical Chemistry, 380(4), 650–657.
  • Lutze, H. V. (2016). Water, 6. Treatment by oxidation processes. In Wiley-VCH (Ed.), Ullmann's Encyclopedia of Industrial Chemistry (pp. 1–16). Wiley-VCH Verlag GmbH & Co. KGaA.
  • Henderson, R., Carlson, K., Gregory, D. (2001). The impact of ferrous ion reduction of chlorite ion on drinking water process performance. Water Research, 35(18), 4464–4473.
  • Herman, M., Wieczorek, M., Matuszek, M., Tokarczyk, J., Stafinski, M., Koscielniak, P. (2006). Determination of chlorite in drinking water and related aspects of environment protection. Journal of Elementology, 11(4), 449–455.
  • Chang, C.-Y., Hsieh, Y.-H., Hsu, S.-S., Hu, P.-Y., Wang, K.-H. (2000). The formation of disinfection by-products in water treated with chlorine dioxide. Journal of Hazardous Materials, 79(1–2), 89–102.
  • Gan, W., Huang, H., Yang, X., Peng, Z., Chen, G. (2016). Emerging investigators series: Disinfection byproducts in mixed chlorine dioxide and chlorine water treatment. Environmental Science: Water Research & Technology, 2(5), 838–847.
  • Padhi, R. K., Subramanian, S., Satpathy, K. K. (2019). Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO2‾, and ClO3‾) during treatment of different source water with chlorine and chlorine dioxide. Chemosphere, 218, 540–550.
  • Myers, J. N., Steinecker, W. H., Sandlin, Z. D., Cox, J. A., Gordon, G., Pacey, G. E. (2012). Development of an automated on-line electrochemical chlorite ion sensor. Talanta, 94, 227–231.
  • Health Canada (2020). Guidelines for Canadian Drinking Water Quality–Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch. https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/ pdf/pubs/water-eau/sum_guide-res_recom/summary-table-EN-2020-02-11.pdf
  • Health Canada (2008). Guidelines for Canadian Drinking Water Quality: Guideline Technical Document–Chlorite and Chlorate (Publication No. H128-1/08-549E). Water Quality and Health Bureau, Healthy Environments and Consumer Safety Branch. https://www.canada.ca/content/dam/canada/health-canada/migration/healthy-canadians/publications/healthy-living-vie-saine/ water-chlorite-chlorate-eau/alt/water-chlorite-chlorate-eau-eng.pdf
  • World Health Organization (2017). Guidelines for Drinking-water Quality: fourth edition incorporating the first addendum. https://www.who.int/publications/i/item/9789241549950
  • Hoigne, J., Bader, H. (1994). Kinetics of reactions of chlorine dioxide (OClO) in water–I. Rate constants for inorganic and organic compounds. Water Research, 28(1), 45–55.
  • Al-Zahrani, E., Soomro, M. T., Bashami, R. M., Ur-Rehman, A., Danish, E., Ismail, I. M. I., Aslam, M., Hameed, A. (2016). Fabrication and performance of magnetite (Fe3O4) modified carbon paste electrode for the electrochemical detection of chlorite ions in aqueous medium. Journal of Environmental Chemical Engineering, 4(4A), 4330–4341.
  • Teh, H. B., Yau-Li, S. F. (2015). Simultaneous determination of bromate, chlorite and haloacetic acidsby two-dimensional matrix elimination ion chromatography withcoupled conventional and capillary columns. Journal of Chromatography A, 1383, 112–120.
  • Zhu, B., Zhong, Z., Yao, J. (2006). Ion chromatographic determination of trace iodate, chlorite, chlorate, bromide, bromate and nitrite in drinking water using suppressed conductivity detection and visible detection. Journal of Chromatography A, 1118(1), 106–110.
  • Kang, C.-Y., Jiang, Z.-L., Xi, D.-L., He, X.-C. (2006). A novel, simple and sensitive resonance scattering spectral method for the determination of chlorite in water by means of rhodamine B. Journal of Environmental Sciences, 18(5), 1000–1003.
  • Prince, L. A. (1964). Determination of chloride, hypochlorite, chlorite, chlorate, perchlorate, and chlorine dioxide in composite mixtures. Analytical Chemistry, 36(3), 613–616.
  • Cubuk, O., Colak, I., Özdokur, K. V., Caglar, B., Coldur, F., Topcu, C. (2019). Voltammetric detection of chlorite ion using carbon paste sensor modified with N-cetylpyridinium–bentonite. International Journal of Environmental Analytical Chemistry, 99(4), 343–356.
  • Casella, I. G., Contursi, M. (2005). Electrochemical and spectroscopic characterization of a tungsten electrode as a sensitive amperometric sensor of small inorganic ions. Electrochimica Acta, 50(20), 4146–4154.
  • Praus, P. (2004). Determination of chlorite in drinking water by on-line coupling of capillary isotachophoresis and capillary zone electrophoresis. Talanta, 62(5), 977–982.
  • Ohura, H., Imato, T., Yamasaki, S. (1999). Simultaneous potentiometric determination of ClO3‾ – ClO2‾ and ClO3‾ – HClO by flow injection analysis using Fe(III)–Fe(II) potential buffer. Talanta, 49(5), 1003–1015.
  • Liu, Y., Sun, Y., Du, J., Lv, X., Zhao, Y., Chen, M., Wang, P., Guo, W. (2011). Highly sensitive and selective turn-on fluorescent and chromogenic probe for Cu2+ and ClO‾ based on a N-picolinyl rhodamine B-hydrazide derivative. Organic & Biomolecular Chemistry, 9(2), 432–437.
  • Jiang, Q., Jing, Y., Ni, Y., Gao, R., Zhou, P. (2020). Potentiality of carbon quantum dots derived from chitin as a fluorescent sensor for detection of ClO‾. Microchemical Journal, 157, Article 105111.
  • Yang, Y., Gao, C.-Y., Chen, J., Zhang, N., Dong, D. (2016). A pyrene-based fluorescent and colorimetric chemodosimeter for the detection of ClO‾ ions. Analytical Methods, 8(4), 805–809.
  • Shiraishi, Y., Yamada, C., Hirai, T. (2019). A coumarin–dihydroperimidine dye as a fluorescent chemosensor for hypochlorite in 99% water. RSC Advances, 9(49), 28636–28641.
  • Wang, W., Ning, J.-Y., Liu, J.-T., Miao, J.-Y., Zhao, B.-X. (2019). A mitochondria-targeted ratiometric fluorescence sensor for the detection of hypochlorite in living cells. Dyes and Pigments, 171, Article 107708.
  • Li, J., Huo, F., Yin, C. (2014). A selective colorimetric and fluorescent probe for the detection of ClO‾ and its application in bioimaging. RSC Advances, 4(84), 44610–44613.
  • Zheng, X., Fan, R., Xing, K., Zhu, K., Wang, P., Yang, Y. (2020). Smart cationic coordination polymer: A single-crystal-to-single-crystal approach for simultaneous detection and removal of perchlorate in aqueous media. Chemical Engineering Journal, 380, Article 122580.
  • Zhong, X., Yang, Q., Chen, Y., Jiang, Y., Dai, Z. (2020). Aggregation-induced fluorescence probe for hypochlorite imaging in mitochondria of living cells and zebrafish. Journal of Materials Chemistry B, 8(33), 7375–7381.
  • Dahal, D., McDonald, L., Bi, X., Abeywickrama, C., Gombedza, F., Konopka, M., Paruchuri, S., Pang, Y. (2017). An NIR-emitting lysosome-targeting probe with large Stokes shift via coupling cyanine and excited-state intramolecular proton transfer. Chemical Communications, 53(26), 3697–3700.
  • Tseng, H.-W., Liu, J.-Q., Chen, Y.-A., Chao, C.-M., Liu, K.-M., Chen, C.-L., Lin, T.-C., Hung, C.-H., Chou, Y.-L., Lin, T.-C., Wang, T.-L., Chou, P.-T. (2015). Harnessing excited-state intramolecular proton-transfer reaction via a series of amino-type hydrogen-bonding molecules. Journal of Physical Chemistry Letters, 6(8), 1477–1486.
  • Sakai, R., Satoh, T., Kakuchi, T. (2017). Polyacetylenes as colorimetric and fluorescent chemosensor for anions. Polymer Reviews, 57(1), 160–175.
  • Pur, F. N. (2020). Calix[4]API‑s: fully functionalized calix[4]arene‑based facial active pharmaceutical ingredients [in-press]. Molecular Diversity, https://doi.org/10.1007/s11030-020-10042-0.
  • Kumar, R., Sharma, A., Singh, H., Suating, P., Kim, H. S., Sunwoo, K., Shim, I., Gibb, B. C., Kim, J. S. (2019). Revisiting fluorescent calixarenes: From molecular sensors to smart materials. Chemical Reviews, 119(16), 9657–9721.
  • Rodell, C. B., Mealy, J. E., Burdick, J. A. (2015). Supramolecular guest-host interactions for the preparation of biomedical materials. Bioconjugate Chemistry, 26(12), 2279–2289.
  • Naseer, M. M., Ahmed, M., Hameed, S. (2017). Functionalized calix[4]arenes as potential therapeutic agents. Chemical Biology & Drug Design, 89(2), 243–256.
  • Kiegiel, K., Steczek, L., Zakrzewska-Trznadel, G. (2013). Application of calixarenes as macrocyclic ligands for uranium(VI): A review. Journal of Chemistry, 2013, Article 762819.
  • Fang-Lu, F., Jin-Qiu, J., Xue-Mei, C. (2015). Synthesis, crystal structure and fluorescent properties of a novel benzothiazole-derived fluorescent probe for Zn2+. Journal of Chemical Research, 39(11), 661–664.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Selahattin Bozkurt 0000-0002-9147-5938

Erkan Halay 0000-0002-0084-7709

Project Number 2018/SB002
Publication Date January 31, 2021
Published in Issue Year 2021

Cite

APA Bozkurt, S., & Halay, E. (2021). Synthesis of Benzothiazole Bearing Calixarene as a Chemical Sensor with Triggered Fluorescence Property for Chlorite Ion. Avrupa Bilim Ve Teknoloji Dergisi(21), 486-492. https://doi.org/10.31590/ejosat.838144