Research Article
BibTex RIS Cite

Simetrik Olarak Yerleştirilmiş Dairesel Boşluklara Dayalı 24-28 GHz bant 5G Anten Tasarımı

Year 2020, , 408 - 411, 30.11.2020
https://doi.org/10.31590/ejosat.843864

Abstract

5G (beşinci nesil) hücresel sistemlerin, mobil hizmet ve uygulamalara olan talebi karşılayacak geniş bir frekans bölgesinde çalışması bekleniyor. 5G uygulamalara yönelik antenlerin, 5G haberleşmenin planlanan milimetre dalga frekans aralığında atmosferik soğurma / boş alan yayılım kaybı dikkate alınarak kompak yapı, üstün kazanç ve ultra bant genişliği sağlamaları beklenmekte. Bu sebeple gelecek 5G uygulamaları için anten tasarımı süreci oldukça çetrefilli bir süreç tanımlıyor. Bu makalede, toprak düzlemi ve rezonatör kısmı boşluk içeren dairesel bir yama yapısına dayanan yüksek kazançlı, geniş bantlı bir mm dalga anten geliştirilmiştir. Tasarlanan anten, yaygın olarak kullanılan bir tam dalgalı elektromanyetik çözücü ile analiz edilmiştir. Sırasıyla, S11 yansıma katsayısı, E düzlemi ve H düzlemindeki anten ışıma demetleri, yüzey akım dağılımı (J), anten yönlülüğü (D) ve antenin maksimum kazanç değerlerini kapsayan anten tasarımına ilişkin esas başarım ölçütleri elde edilmiştir. Simülasyon sonuçları, aralıklı dairesel yama tabanlı tasarımın, 5G hücresel sistemlerin 24 − 28 GHz bandını kapsayan 21.6 − 28.8 GHz frekans aralığında −10 dB altında S11 yanıtına sahip olduğunu ortaya koymaktadır. Ayrıca, alt toprak tabakaya ve üst yayıcı tabakaya simetrik olarak yerleştirilen daire şeklindeki eş merkezli boşlukların yan lob seviyesini −10 dB değerinin altına düşürdüğü, ve anten kazancını arttırdığı gözlemlenmiştir. Anten performansındaki bu iyileşme, boşluklar sayesinde oluşturulan yeni akım bölgelerinin büyük girdap akım dağılımlarına ev sahipliği yapmasına bağlanmaktadır. 10 mm × 13 mm yüzey alanı ile önerilen anten 9.44 dBi tepe kazancı ve %85'in üzerinde bir ışıma verimliliği göstermiştir. Yüksek kazanç ve kompak yapısı sbebiyle önerilen anten gelecek nesil 5G aygıtlarla uyumluluk göstermektedir.

References

  • IMT Vision’S Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond, document Rec. ITU-R M.2083-0, ITUR, Geneva, Switzerland, Sep. (2015)
  • Technical Feasibility of IMT in Bands Above 6 GHz, document ITU-R M.2376-0, ITU-R, pp. 1-132, Jul. (2015).
  • Xu, B., Ying, Z., Scialacqua, L., Scannavini, A., Foged, L. J., Bolin, T., Zhao, K., He, S., & Gustafsson, M. (2018). Radiation Performance Analysis of 28 GHz Antennas Integrated in 5G Mobile Terminal Housing. IEEE Access, 6(c), 48088–48101.
  • Sohul, M. M., Yao, M., Yang, T., & Reed, J. H. Spectrum access system for the citizen broadband radio service. IEEE Communications Magazine, 53(7), 18–25 (2015)
  • Hong, W. Solving the 5G Mobile Antenna Puzzle: Assessing Future Directions for the 5G Mobile Antenna Paradigm Shift. IEEE Microwave Magazine, 18(7), 86–102 (2017).
  • Zhao, A., & Ren, Z. Size Reduction of Self-Isolated MIMO Antenna System for 5G Mobile Phone Applications. IEEE Antennas and Wireless Propagation Letters, 18(1), 152–156 (2019).
  • Ojaroudiparchin, N., Shen, M., & Pedersen, G. F. Multi-layer 5G mobile phone antenna for multi-user MIMO communications. 2015 23rd Telecommunications Forum, TELFOR 2015, 559–562 (2016)
  • E. H. Mujammami and A. B. Sebak, "Wideband High Gain Printed Quasi-Yagi Diffraction Gratings-Based Antenna for 5G Applications," IEEE Access, vol. 7, pp. 18089-18100, (2019)
  • E. Mujammami and A. Sebak, "Design of a 30-GHz high gain quasi-Yagi antenna", XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, Quebec, Canada, pp. 813-815 (2017)
  • J. Xu, W. Hong, H. Zhang and Y. Yu, "Design and measurement of array antennas for 77 GHz automotive radar application," 10th UKEurope-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), Liverpool, UK, pp. 1-4 (2017)
  • V. K. Kothapudi and V. Kumar, "A 6-Port Two-Dimensional 3 3 Series-Fed Planar Array Antenna for Dual-Polarized X-Band Airborne Synthetic Aperture Radar Applications," in IEEE Access, vol.6, pp.12001-12007, (2018)
  • H. A. Diawuo and Y. Jung, "Broadband Proximity-Coupled Microstrip Planar Antenna Array for 5G Cellular Applications," IEEE Antennas and Wireless Propagat. Letters, vol. 17, no. 7, pp. 1286-1290, Jul. (2018)
  • CST Microwave Studio, http://www.cst.com, CST GmbH, Darmstadt, Germany

Design of 24-28 GHz band 5G Antenna Based on Symmetrically Located Circular Gaps

Year 2020, , 408 - 411, 30.11.2020
https://doi.org/10.31590/ejosat.843864

Abstract

5G (fifth generation) cellular system is expected to work in a wide frequency range to meet the demand for mobile services and applications. Antennas will be addressed to the future 5G applications should pose superior characteristics, such as high gain and ultra-large bandwidth response by considering atmospheric absorption/free-space path loss on planned millimeter-wave frequency range of 5G communications. Therefore, antenna design for the future 5G applications is a challenging process. In this article we present a high-gain, broadband mm-Wave antenna based on a circular patch structure with a ground plane and resonator gaps. The designed antenna is analyzed using a widely used full-wave electromagnetic solver. The major antenna figure-of-merits including reflection coefficient, VSWR (voltage-standing wave ratio), antenna patterns in E- and H-planes, surface current distribution, antenna directivity and maximum gain, are obtained. The simulation results show that the gapped circular patch based design has the S11 response less than −10 dB in the frequency range of 21.6-28.8 GHz, which includes 24-28 GHz band of 5G cellular systems. Moreover, it is observed that the symmetrically located circular gaps on both top and bottom layers decrease the side lobe level under −10 dB value, and enhance the gain. We attribute the improvement in the antenna performance to the created current regions due to gaps hosting large vortex current distributions. With 10 mm × 13mm surface area, the proposed antenna demonstrates the peak gain of 9.44 dBi and the radiation efficiency of over 85%. High gain and compact size make this antenna suitable for coming 5G devices.

References

  • IMT Vision’S Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond, document Rec. ITU-R M.2083-0, ITUR, Geneva, Switzerland, Sep. (2015)
  • Technical Feasibility of IMT in Bands Above 6 GHz, document ITU-R M.2376-0, ITU-R, pp. 1-132, Jul. (2015).
  • Xu, B., Ying, Z., Scialacqua, L., Scannavini, A., Foged, L. J., Bolin, T., Zhao, K., He, S., & Gustafsson, M. (2018). Radiation Performance Analysis of 28 GHz Antennas Integrated in 5G Mobile Terminal Housing. IEEE Access, 6(c), 48088–48101.
  • Sohul, M. M., Yao, M., Yang, T., & Reed, J. H. Spectrum access system for the citizen broadband radio service. IEEE Communications Magazine, 53(7), 18–25 (2015)
  • Hong, W. Solving the 5G Mobile Antenna Puzzle: Assessing Future Directions for the 5G Mobile Antenna Paradigm Shift. IEEE Microwave Magazine, 18(7), 86–102 (2017).
  • Zhao, A., & Ren, Z. Size Reduction of Self-Isolated MIMO Antenna System for 5G Mobile Phone Applications. IEEE Antennas and Wireless Propagation Letters, 18(1), 152–156 (2019).
  • Ojaroudiparchin, N., Shen, M., & Pedersen, G. F. Multi-layer 5G mobile phone antenna for multi-user MIMO communications. 2015 23rd Telecommunications Forum, TELFOR 2015, 559–562 (2016)
  • E. H. Mujammami and A. B. Sebak, "Wideband High Gain Printed Quasi-Yagi Diffraction Gratings-Based Antenna for 5G Applications," IEEE Access, vol. 7, pp. 18089-18100, (2019)
  • E. Mujammami and A. Sebak, "Design of a 30-GHz high gain quasi-Yagi antenna", XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, Quebec, Canada, pp. 813-815 (2017)
  • J. Xu, W. Hong, H. Zhang and Y. Yu, "Design and measurement of array antennas for 77 GHz automotive radar application," 10th UKEurope-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), Liverpool, UK, pp. 1-4 (2017)
  • V. K. Kothapudi and V. Kumar, "A 6-Port Two-Dimensional 3 3 Series-Fed Planar Array Antenna for Dual-Polarized X-Band Airborne Synthetic Aperture Radar Applications," in IEEE Access, vol.6, pp.12001-12007, (2018)
  • H. A. Diawuo and Y. Jung, "Broadband Proximity-Coupled Microstrip Planar Antenna Array for 5G Cellular Applications," IEEE Antennas and Wireless Propagat. Letters, vol. 17, no. 7, pp. 1286-1290, Jul. (2018)
  • CST Microwave Studio, http://www.cst.com, CST GmbH, Darmstadt, Germany
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hurrem Özpınar This is me 0000-0002-3202-4950

Hüseyin Sinan Akşimşek This is me 0000-0002-0807-3824

Publication Date November 30, 2020
Published in Issue Year 2020

Cite

APA Özpınar, H., & Akşimşek, H. S. (2020). Design of 24-28 GHz band 5G Antenna Based on Symmetrically Located Circular Gaps. Avrupa Bilim Ve Teknoloji Dergisi408-411. https://doi.org/10.31590/ejosat.843864