Review
BibTex RIS Cite

Gen Transfer Teknolojisi ve Yağ asidi Kompozisyonlarına Katkısı- CRSPR/Cas Teknolojisi

Year 2021, , 300 - 305, 31.01.2021
https://doi.org/10.31590/ejosat.853850

Abstract

Son yüzyılda biyoteknolojik çalışmalarla canlı organizmaların anlaşılmasına ve organizmalar arasında genetik bilgi aktarımına olanak sağlamıştır. Genetik mühendisliği sahasının genişlemesi tarımsal faaliyetlerde verim, kalite, hastalık ve zararlılara dirençli, biyotik/abiyotik stres faktörlerine dayanıklı çeşitlerin geliştirilmesine olanak sağlamıştır. Gen transfer teknolojisinin bir diğer çalışma sahası ise bitki besin içeriklerinde değişimi mümkün kılan çalışmalar olmuştur. Genetik modifikasyonlarla besin kalitesi, kimyasal içeriğin arttırılması/azaltılması, beslenme fizyolojisine uygunluk gibi önemli ekonomik katkılar sağlamıştır. Gen modifikasyon çalışmalarıyla bitki besin bileşenlerinin arttırılması yada azaltılmasıyla uygun fizyolojik beslenme amaçlanmıştır. Son yapılan çalışmalarla kolza, haşhaş, patates, soya, ayçiçeği gibi bitkilerde ekonomik değeri yüksek besin içerikleri elde edilmiştir. Bitki besin içeriği değişiminde yeni bir teknik olan CRISPR/cas teknolojisi ile kolza, ayçiçeği, zeytin, ketencik gibi çeşitli bitkilerde MUFA/PUFA içeren yağlar elde edilmiştir. Ayrıca yapılan son çalışmalar ile CRISPR/Cas ile düzenlenmiş bitkilerin GDO’lu bitkiler katagorisine tabi tutulmadığı gösterilmiştir. Ancak gen modifikasyonu ile elde edilen tüm ürünlerin olası risklerinin azaltılması için insan-çevre ilişkilerinin gerekli testlere tabi tulması gerekmektedir.

References

  • Al Amin, N., Ahmad, N., Wu, N., Pu, X., Ma, T., Du, Y., … & Wang, P. (2019). CRISPR-Cas9 mediated targeted disruption of FAD2–2 microsomal omega-6 desaturase in soybean (Glycine max. L). BMC biotechnology, 19(1), 1-10.
  • Awais, M., Pervez, A., Yaqub, A., Sarwar, R., Alam, F., & Siraj, S. (2010). Current status of biotechnology in health. American Eurasian J. Agric. & Environ. Sci, 7(2), 210-220.
  • Bao, A., Chen, H., Chen, L., Chen, S., Hao, Q., Guo, W., ... & Zhang, C. (2019). CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC plant biology, 19(1), 1-12.
  • Belide, S., Petrie, J. R., Shrestha, P., & Singh, S. P. (2012). Modification of seed oil composition in Arabidopsis by artificial microRNA-mediated gene silencing. Frontiers in plant science, 3, 168.
  • Cai, Y., Chen, L., Liu, X., Guo, C., Sun, S., Wu, C., ... & Hou, W. (2018). CRISPR/Cas9‐mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant biotechnology journal, 16(1), 176-185.
  • Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C., Jiang, B., ... & Hou, W. (2015). CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One, 10(8), e0136064.
  • Cai, Y., Wang, L., Chen, L., Wu, T., Liu, L., Sun, S., ... & Han, T. (2020). Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant biotechnology journal, 18(1), 298-309.
  • Chen, Y., Zhou, X. R., Zhang, Z. J., Dribnenki, P., Singh, S., & Green, A. (2015) Development of high oleic oil crop platform in flax through RNAi-mediated multiple FAD2 gene silencing. Plant Cell Reports, 34:643–653. https://doi.org/10.1007/s00299-015- 1737-5
  • Clark, S. E., Running, M. P., & Meyerowitz, E. M. (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development, 119(2), 397-418.
  • Clark, S. E., Running, M. P., & Meyerowitz, E. M. (1995). CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development. 121: 2057–2067.
  • Demirel, F. 2020. Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji. Journal of Agriculture, 3(2), 1-9.
  • Demirel, S., Usta, M,., & Demirel, F. (2020). Fitopatojenlere Karşı Dayanıklılıkta CRISPR/Cas Teknolojisi. Avrupa Bilim ve Teknoloji Dergisi, (20), 693-702.
  • Demorest, Z. L., Coffman, A., Baltes, N. J., Stoddard, T. J., Clasen, B. M., Luo, S., ... & Mathis, L. (2016). Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC plant biology, 16(1), 225.
  • Do, P. T., Nguyen, C. X., Bui, H. T., Tran, L. T., Stacey, G., Gillman, J. D., ... & Stacey, M. G. (2019). Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC plant biology, 19(1), 311.
  • Falck-Zepeda, J., Yorobe Jr, J., Husin, B. A., Manalo, A., Lokollo, E., Ramon, G., ... & Sutrisno. (2012). Estimates and implications of the costs of compliance with biosafety regulations in developing countries. GM crops & food, 3(1), 52-59.
  • Ghafoor, K., Özcan, M. M., Fahad, A. J., Babiker, E. E., & Fadimu, G. J. (2019). Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven-and microwave-roasted poppy seeds and oil. LWT, 99, 490-496.
  • Gou, J., Debnath, S., Sun, L., Flanagan, A., Tang, Y., Jiang, Q., ... & Wang, Z. Y. (2018). From model to crop: functional characterization of SPL 8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant biotechnology journal, 16(4), 951-962.
  • Haun, W., Coffman, A., Clasen, B. M., Demorest, Z. L., Lowy, A., Ray, E., ... & Mathis, L. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant biotechnology journal, 12(7), 934-940.
  • Hoffmann, T. (1997). Gentransfer bei höheren Pflanzen. Biologische Grundlagen der Pflanzenzüchtung. Parey Bucherverlag, Berlin, 275-323.
  • Jiang, W. Z., Henry, I. M., Lynagh, P. G., Comai, L., Cahoon, E. B., & Weeks, D. P. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant biotechnology journal, 15(5), 648-657.
  • Jiang, W. Z., Henry, I. M., Lynagh, P. G., Comai, L., Cahoon, E. B., & Weeks, D. P. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant biotechnology journal, 15(5), 648-657.
  • Kim, J., & Kim, J. S. (2016). Bypassing GMO regulations with CRISPR gene editing. Nature biotechnology, 34(10), 1014-1015. Lack, G. (2002). Clinical risk assessment of GM foods. Toxicology letters, 127(1-3), 337-340.
  • Lazar, G., & Goodman, H. M. (2006). MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proceedings of the National Academy of Sciences, 103(2), 472-476.
  • Li, Z., Liu, Z. B., Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L., ... & Cigan, A. M. (2015). Cas9-guide RNA directed genome editing in soybean. Plant physiology, 169(2), 960-970.
  • Lyzenga, W. J., Harrington, M., Bekkaoui, D., Wigness, M., Hegedus, D. D., & Rozwadowski, K. L. (2019). CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa. BMC plant biology, 19(1), 292.
  • McGinn, M., Phippen, W. B., Chopra, R., Bansal, S., Jarvis, B. A., Phippen, M. E., ... & Durrett, T. P. (2019). Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop. Plant biotechnology journal, 17(4), 776-788.
  • Mucci, A., & Hough, G. (2004). Perceptions of genetically modified foods by consumers in Argentina. Food Quality and Preference, 15(1), 43-51.
  • Ohlrogge, J. B. (1994). Design of new plant products: engineering of fatty acid metabolism. Plant physiology, 104(3), 821.
  • Ozseyhan, M. E., Kang, J., Mu, X., & Lu, C. (2018). Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Plant Physiology and Biochemistry, 123, 1-7.
  • Peter, K. V. (Ed.). (2012). Handbook of herbs and spices. Elsevier.
  • Schoof, H., Lenhard, M., Haecker, A., Mayer, K. F. X., Jurgens, G., & Laux, T. (2000). The stem cell population € of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell. 100: 635–644. doi:10.1016/S0092- 8674(00)80700-X
  • Schwarz, S., Grande, A. V., Bujdoso, N., Saedler, H., & Huijser, P. (2008). The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant molecular biology, 67(1-2), 183-195.
  • Singer, S. D., Weselake, R. J., & Rahman, H. (2014) Development and characterization of low α-linolenic acid Brassica oleracea lines bearing a novel mutation in a ’class a’ FATTY ACID DESATURASE 3 gene. BMC Genetics, 15:94. https://doi.org/10. 1186/s12863-014-0094-7.
  • Sternberg, S. H., Richter, H., Charpentier, E., & Qimron, U. (2016). Adaptation in CRISPR-Cas systems. Molecular cell, 61(6), 797-808.
  • Stirling, A., Glover, D., & Millstone, E. (2015). Regulating Genetic Engineering: the limits and politics of knowledge.
  • Teichmann, T. & Muhr, M. (2015). Shaping plant architecture. Front. Plant Sci. 6: 233.
  • Thierfelder, A., Lühs, W., & Friedt, W. (1992). Breeding of industrial oil crops with the aid of biotechnology: a review. Industrial Crops and Products, 1(2-4), 261-271.
  • Turgut, K., Uranbey, S., & Özcan, S. (2001). Antisens RNA Teknolojisi. Bitki Biyoteknolojisi: Genetik Mühendisliği ve Uygulamaları (Ed. S. Özcan, E. Gürel ve M. Babaoğlu). s, 401-420.
  • Uzogara, S. G. (2000). The impact of genetic modification of human foods in the 21st century: A review. Biotechnology advances, 18(3), 179-206.
  • Velasco, L., & Fernández-Martínez, J. M. (2002) Breeding oilseed crops for improved oil quality. Journal of Crop Production, 5: 309–344. https://doi.org/10.1300/J144v05n01_13
  • Waltz, E. (2018). With a free pass, CRISPR-edited plants reach market in record time.
  • Wang, H. & Wang, H. (2015). The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol. Plant. 8: 677–688. doi: 10.1016/j.molp.2015.01.008
  • Wenzel, G., & Mohler, V. (2001). Innovationen in der Pflanzenbiotechnologie. Euro-Biotech, 2001, 108-111.
  • Yang, H., Wu, J. J., Tang, T., Liu, K. D., & Dai, C. (2017). CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Scientific reports, 7(1), 1-13.
  • Yang, Y., Zhu, K., Li, H., Han, S., Meng, Q., Khan, S. U., ... & Zhou, Y. (2018). Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant biotechnology journal, 16(7), 1322-1335.
  • Zhang, Y., Cheng, X., Wang, Y., Díez‐Simón, C., Flokova, K., Bimbo, A., ... & Ruyter‐Spira, C. (2018). The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytologist, 219(1), 297-309.
  • Zhang, Z., Ge, X., Luo, X., Wang, P., Fan, Q., Hu, G., ... & Wu, J. (2018). Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Frontiers in plant science, 9, 842.
  • Zheng, M., Zhang, L., Tang, M., Liu, J., Liu, H., Yang, H., ... & Hua, W. (2020). Knockout of two Bna MAX 1 homologs by CRISPR/Cas9‐targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant biotechnology journal, 18(3), 644-654.

Gene Transfer Technology and Its Contribution to Oil Acid Compositions- CRSPR / Cas Technology

Year 2021, , 300 - 305, 31.01.2021
https://doi.org/10.31590/ejosat.853850

Abstract

In the last century, biotechnological studies have enabled the understanding of living organisms and the transfer of genetic information between organisms. The expansion of the field of genetic engineering has enabled the development of yield, quality, disease and pest resistant varieties that are resistant to biotic / abiotic stress factors in agricultural activities. Another field of study of gene transfer technology has been studies that enable changes in plant nutrient contents. With genetic modifications, it has made important economic contributions such as food quality, increase / decrease of chemical content, compliance with nutritional physiology. Proper physiological nutrition is aimed by increasing or decreasing plant nutritional components with gene modification studies. With the latest studies, nutrients with high economic value have been obtained in plants such as rapeseed, poppy, potato, soybean and sunflower. With the CRISPR / cas technology, which is a new technique in plant nutrient content change, oils containing MUFA / PUFA have been obtained in various plants such as rapeseed, sunflower, olive, camelina. In addition, with the recent studies, it has been shown that the plants arranged with CRISPR / Cas are not subjected to the GMO plants category. However, human-environment relationships should be subjected to necessary tests in order to reduce the possible risks of all products obtained by gene modification.

References

  • Al Amin, N., Ahmad, N., Wu, N., Pu, X., Ma, T., Du, Y., … & Wang, P. (2019). CRISPR-Cas9 mediated targeted disruption of FAD2–2 microsomal omega-6 desaturase in soybean (Glycine max. L). BMC biotechnology, 19(1), 1-10.
  • Awais, M., Pervez, A., Yaqub, A., Sarwar, R., Alam, F., & Siraj, S. (2010). Current status of biotechnology in health. American Eurasian J. Agric. & Environ. Sci, 7(2), 210-220.
  • Bao, A., Chen, H., Chen, L., Chen, S., Hao, Q., Guo, W., ... & Zhang, C. (2019). CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC plant biology, 19(1), 1-12.
  • Belide, S., Petrie, J. R., Shrestha, P., & Singh, S. P. (2012). Modification of seed oil composition in Arabidopsis by artificial microRNA-mediated gene silencing. Frontiers in plant science, 3, 168.
  • Cai, Y., Chen, L., Liu, X., Guo, C., Sun, S., Wu, C., ... & Hou, W. (2018). CRISPR/Cas9‐mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant biotechnology journal, 16(1), 176-185.
  • Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C., Jiang, B., ... & Hou, W. (2015). CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One, 10(8), e0136064.
  • Cai, Y., Wang, L., Chen, L., Wu, T., Liu, L., Sun, S., ... & Han, T. (2020). Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant biotechnology journal, 18(1), 298-309.
  • Chen, Y., Zhou, X. R., Zhang, Z. J., Dribnenki, P., Singh, S., & Green, A. (2015) Development of high oleic oil crop platform in flax through RNAi-mediated multiple FAD2 gene silencing. Plant Cell Reports, 34:643–653. https://doi.org/10.1007/s00299-015- 1737-5
  • Clark, S. E., Running, M. P., & Meyerowitz, E. M. (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development, 119(2), 397-418.
  • Clark, S. E., Running, M. P., & Meyerowitz, E. M. (1995). CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development. 121: 2057–2067.
  • Demirel, F. 2020. Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji. Journal of Agriculture, 3(2), 1-9.
  • Demirel, S., Usta, M,., & Demirel, F. (2020). Fitopatojenlere Karşı Dayanıklılıkta CRISPR/Cas Teknolojisi. Avrupa Bilim ve Teknoloji Dergisi, (20), 693-702.
  • Demorest, Z. L., Coffman, A., Baltes, N. J., Stoddard, T. J., Clasen, B. M., Luo, S., ... & Mathis, L. (2016). Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC plant biology, 16(1), 225.
  • Do, P. T., Nguyen, C. X., Bui, H. T., Tran, L. T., Stacey, G., Gillman, J. D., ... & Stacey, M. G. (2019). Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC plant biology, 19(1), 311.
  • Falck-Zepeda, J., Yorobe Jr, J., Husin, B. A., Manalo, A., Lokollo, E., Ramon, G., ... & Sutrisno. (2012). Estimates and implications of the costs of compliance with biosafety regulations in developing countries. GM crops & food, 3(1), 52-59.
  • Ghafoor, K., Özcan, M. M., Fahad, A. J., Babiker, E. E., & Fadimu, G. J. (2019). Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven-and microwave-roasted poppy seeds and oil. LWT, 99, 490-496.
  • Gou, J., Debnath, S., Sun, L., Flanagan, A., Tang, Y., Jiang, Q., ... & Wang, Z. Y. (2018). From model to crop: functional characterization of SPL 8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant biotechnology journal, 16(4), 951-962.
  • Haun, W., Coffman, A., Clasen, B. M., Demorest, Z. L., Lowy, A., Ray, E., ... & Mathis, L. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant biotechnology journal, 12(7), 934-940.
  • Hoffmann, T. (1997). Gentransfer bei höheren Pflanzen. Biologische Grundlagen der Pflanzenzüchtung. Parey Bucherverlag, Berlin, 275-323.
  • Jiang, W. Z., Henry, I. M., Lynagh, P. G., Comai, L., Cahoon, E. B., & Weeks, D. P. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant biotechnology journal, 15(5), 648-657.
  • Jiang, W. Z., Henry, I. M., Lynagh, P. G., Comai, L., Cahoon, E. B., & Weeks, D. P. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant biotechnology journal, 15(5), 648-657.
  • Kim, J., & Kim, J. S. (2016). Bypassing GMO regulations with CRISPR gene editing. Nature biotechnology, 34(10), 1014-1015. Lack, G. (2002). Clinical risk assessment of GM foods. Toxicology letters, 127(1-3), 337-340.
  • Lazar, G., & Goodman, H. M. (2006). MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proceedings of the National Academy of Sciences, 103(2), 472-476.
  • Li, Z., Liu, Z. B., Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L., ... & Cigan, A. M. (2015). Cas9-guide RNA directed genome editing in soybean. Plant physiology, 169(2), 960-970.
  • Lyzenga, W. J., Harrington, M., Bekkaoui, D., Wigness, M., Hegedus, D. D., & Rozwadowski, K. L. (2019). CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa. BMC plant biology, 19(1), 292.
  • McGinn, M., Phippen, W. B., Chopra, R., Bansal, S., Jarvis, B. A., Phippen, M. E., ... & Durrett, T. P. (2019). Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop. Plant biotechnology journal, 17(4), 776-788.
  • Mucci, A., & Hough, G. (2004). Perceptions of genetically modified foods by consumers in Argentina. Food Quality and Preference, 15(1), 43-51.
  • Ohlrogge, J. B. (1994). Design of new plant products: engineering of fatty acid metabolism. Plant physiology, 104(3), 821.
  • Ozseyhan, M. E., Kang, J., Mu, X., & Lu, C. (2018). Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Plant Physiology and Biochemistry, 123, 1-7.
  • Peter, K. V. (Ed.). (2012). Handbook of herbs and spices. Elsevier.
  • Schoof, H., Lenhard, M., Haecker, A., Mayer, K. F. X., Jurgens, G., & Laux, T. (2000). The stem cell population € of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell. 100: 635–644. doi:10.1016/S0092- 8674(00)80700-X
  • Schwarz, S., Grande, A. V., Bujdoso, N., Saedler, H., & Huijser, P. (2008). The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant molecular biology, 67(1-2), 183-195.
  • Singer, S. D., Weselake, R. J., & Rahman, H. (2014) Development and characterization of low α-linolenic acid Brassica oleracea lines bearing a novel mutation in a ’class a’ FATTY ACID DESATURASE 3 gene. BMC Genetics, 15:94. https://doi.org/10. 1186/s12863-014-0094-7.
  • Sternberg, S. H., Richter, H., Charpentier, E., & Qimron, U. (2016). Adaptation in CRISPR-Cas systems. Molecular cell, 61(6), 797-808.
  • Stirling, A., Glover, D., & Millstone, E. (2015). Regulating Genetic Engineering: the limits and politics of knowledge.
  • Teichmann, T. & Muhr, M. (2015). Shaping plant architecture. Front. Plant Sci. 6: 233.
  • Thierfelder, A., Lühs, W., & Friedt, W. (1992). Breeding of industrial oil crops with the aid of biotechnology: a review. Industrial Crops and Products, 1(2-4), 261-271.
  • Turgut, K., Uranbey, S., & Özcan, S. (2001). Antisens RNA Teknolojisi. Bitki Biyoteknolojisi: Genetik Mühendisliği ve Uygulamaları (Ed. S. Özcan, E. Gürel ve M. Babaoğlu). s, 401-420.
  • Uzogara, S. G. (2000). The impact of genetic modification of human foods in the 21st century: A review. Biotechnology advances, 18(3), 179-206.
  • Velasco, L., & Fernández-Martínez, J. M. (2002) Breeding oilseed crops for improved oil quality. Journal of Crop Production, 5: 309–344. https://doi.org/10.1300/J144v05n01_13
  • Waltz, E. (2018). With a free pass, CRISPR-edited plants reach market in record time.
  • Wang, H. & Wang, H. (2015). The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol. Plant. 8: 677–688. doi: 10.1016/j.molp.2015.01.008
  • Wenzel, G., & Mohler, V. (2001). Innovationen in der Pflanzenbiotechnologie. Euro-Biotech, 2001, 108-111.
  • Yang, H., Wu, J. J., Tang, T., Liu, K. D., & Dai, C. (2017). CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Scientific reports, 7(1), 1-13.
  • Yang, Y., Zhu, K., Li, H., Han, S., Meng, Q., Khan, S. U., ... & Zhou, Y. (2018). Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant biotechnology journal, 16(7), 1322-1335.
  • Zhang, Y., Cheng, X., Wang, Y., Díez‐Simón, C., Flokova, K., Bimbo, A., ... & Ruyter‐Spira, C. (2018). The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytologist, 219(1), 297-309.
  • Zhang, Z., Ge, X., Luo, X., Wang, P., Fan, Q., Hu, G., ... & Wu, J. (2018). Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Frontiers in plant science, 9, 842.
  • Zheng, M., Zhang, L., Tang, M., Liu, J., Liu, H., Yang, H., ... & Hua, W. (2020). Knockout of two Bna MAX 1 homologs by CRISPR/Cas9‐targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant biotechnology journal, 18(3), 644-654.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Barış Eren 0000-0002-3852-6476

Publication Date January 31, 2021
Published in Issue Year 2021

Cite

APA Eren, B. (2021). Gen Transfer Teknolojisi ve Yağ asidi Kompozisyonlarına Katkısı- CRSPR/Cas Teknolojisi. Avrupa Bilim Ve Teknoloji Dergisi(22), 300-305. https://doi.org/10.31590/ejosat.853850