Research Article
BibTex RIS Cite

The Effect of the Light and Feeding on Growth of Algea in Bioreactor

Year 2021, , 475 - 480, 30.04.2021
https://doi.org/10.31590/ejosat.859107

Abstract

The energy and food requirements have been increased depending on the growth of the world populations. The consumption of the food and energy cause for rising the carbon dioxide emissions. The increase of the greenhouse gases develops global warming therefore natural disaster occurred. In order to decrease of the effect of the greenhouse gases, the waste should sustainably be controlled and they should be managed for recycling. In consequence, such as an alternative energy resources biodiesel, wind power, biogas, sun have intensively been investigated. Algaes have been considered as an alternative sources supplier for investigating food stock and energy requirements. Algae is a general definition of organism can make a eukaryotic photosynthesis, and there are many sub-species in this class. In previous studies, 1.83 kg of CO2 have been consumed for production of 1 kg of dry algae and they can be used as fertilizer or bio-oil sources. Therefore, appropriate habitats of Algea along with the various features is necessary to investigate.
In this study, the two air bubble column type pilot scale photo-bio reactor 4L were designed for investigation of optimum living condition for "Cladhopora glomerata". Moreover, the effect of different feeding such as inorganic salts, and 17 percent natural amino acids were investigated on the growth of Algea. The results showed that the algae have developed their weight better at the 425 nm wavelength (purple light) compared to daylight. Also, 17 percent natural amino acid is better than the inorganic salts. 

References

  • A. Ruiz, M., Garcia, N. M., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247–253.
  • Abdelhakeem, E., Abou-Zaid, A., & Eissa, M. A. (2019). Thompson Seedless Grapevines Growth and Quality as Affected by Glutamic Acid, Vitamin B, and Algae. Journal of Soil Science and Plant Nutrition, 19, 725-733.
  • Bahadur, A., Zubair, M., & Khan, M. B. (2013). Design, construction and evaluation of solarized airlift tubular photobioreactor. Journal of Physics: Conference Series, 439, 012036.
  • Bedoi, R., Juri, F., Cosi, B., Puksec, T., Cucek, L., & Duic, N. (2020). Beyond energy crops and subsidised electricity e A study on sustainable biogas production and utilisation in advanced energy markets. Energy, 201, 117651.
  • Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217-226.
  • Corrie, M., & Fernando, D. S. (2020). Impacts of global warming on southern California's winegrape climate suitability. Advances in Climate Change Research, 11, 279-293.
  • Dalle, M. A., & Arnaudis, J. (2017). France Patent No.: W. (PCT).
  • Daume, S., Long, B. M., & Crouch, P. (2003). Changes in amino acid content of an algal feed species (Navicula sp.) and their effect on growth and survival of juvenile abalone (Haliotis rubra). Journal of Applied Phycology, 15, 201-207.
  • Dineshbabu, G., Goswamia, G., Kumara, R., Sinhaa, A., & Das, D. (2019). Microalgae–nutritious, sustainable aqua- and animal feed source. Journal of Functional Foods 62, 103545.
  • Farid, S., Omid, N., & Ahmad, T. (2016). Hydrothermal gasification of Cladophora glomerata macroalgae over its hydrochar as a catalyst for hydrogen-rich gas production. Bioresource Technology 222, 232-241.
  • Feng, P., Deng, Z., Fan, L., & Hu, Z. (2012). Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. Journal of Bioscience and Bioengineering, 114, 405-410.
  • Finlay, B. J., & Esteban, G. F. (2013). Protozoa. In (Vol. 6). Elsevier: Encyclopedia of Biodiversity.
  • Franz, B., Retze, A., Schmid-Staiger, U., Trösch, W., & Zastrow, A. (2000). E. P. Office.
  • Gobler, C. J., Norman, C., Panzeca, C., Taylor, G. T., & Sañudo-Wilhelmy, S. A. (2007). Effect of B-vitamins (B1, B12) and inorganic nutrients on algal bloom dynamics in a coastal ecosystem. Aquatic Microbial Ecology, 49, 181-194.
  • Hasan, N., Ahmad, T., & Sajedeh, J. (2020). Investigating the influence of acid washing pretreatment and Zn/activated biochar catalyst on thermal conversion of Cladophora glomerata to value-added bio-products. Energy Conversion and Management 225, 113392.
  • James, C. M., Al-Hınty, S., & Salman, A. E. (1989). Growth and m3 Fatty Acid and Amino Acid Composition of Microalgae Under Different Temperature Regimes. Aquaculture, 77, 337-351.
  • JeanCalleja, A., Kathleen, E., & Neville, C. (2020). The effect of global warming on mortality. Early Human Development, in press.
  • Jianke, H., Li, Y., Wan, M., Yan, Y., Feng, F., Qu, X., Wang, W. (2014). Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient. Bioresource Technology, 159, 8-16.
  • Jörg, D., Uebele, A., Retze, A., Trösch, W., & Schmid-Staiger, U. (2001). A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. Journal of Biotechnology, 92, 89-94.
  • Junchen, X., Jun, C., Xin, K., Xu, J., & Yang, W. (2020). Developing a Spiral-Ascending CO2 Dissolver to Enhance CO2 Mass Transfer in a Horizontal Tubular Photobioreactor for Improved Microalgal Growth. ACS Sustainable Chemistry & Engineering, 8(51), 18926–18935.
  • K. M. Nazmul, I., Kenway, S. J., Marguerite, A. R., Ka Leung, L., & Thomas, W. (2021). A review of the water-related energy consumption of the food system in nexus studies. Journal of Cleaner Production, 279, 123414.
  • Karolina, K., Bogusława, Ł., & Piotr Paweł, W. (2020). Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Research, 48, 101912.
  • Kim, D. G., Lee, C., Park, S.-M., & Choi, Y.-E. (2014). Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris. Bioresource Technology 159, 240-248.
  • Lin-lin, W., Tao, Y., & Mao, X.-z. (2014). A novel flat plate algal bioreactor with horizontal baffles: Structural optimization and cultivation performance. Bioresource Technology 164, 20–27.
  • Lindsey, R. (2021). Climate Change: Atmospheric Carbon Dioxide. Retrieved from
  • Lopamudra, P., Bhattacharjee, V., Mitra, R., Bhattacharya, I., & Chowdhury, R. (2015). Biosequestration of CO2 using power plant algae (Rhizocloniumhieroglyphicum JUCHE2) in a Flat Plate hotobio-Bubble-Reactor –Experimental and modeling. Chemical Engineering Journal, 275, 381-390.
  • Mehran, P., Hamoon, J., Maryam, P., Reza, G., & MohammadAli, A. (2018). Hydrothermal liquefaction of Gracilaria gracilis and Cladophora glomerata macro-algae for biocrude production. Bioresource Technology, 250, 26-34.
  • Michael, C., Ninno, M. d., Gross, M., & Wen, Z. (2015). Use of wavelength-selective optical light filters for enhanced microalgal growth in different algal cultivation systems. Bioresource Technology, 179, 473-482.
  • Minoo, J., & Palsson, B. (1991). High-Density Photoautotrophic Algal Cultures: Design, Construction, and Operation of a Novel Photobioreactor System. Biotechnology and Bioengineering, 1182-1189.
  • Mohsenpour, S. F., Richards, B., & Willoughby, N. (2012). Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresource Technology, 125, 75-81.
  • Mohsenpour, S. F., & Willoughby, N. (2013). Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresource Technology, 142, 147-153.
  • Molina, E. G., Fernandez, J., Acien, F. G., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology 92, 113-131.
  • Oğuz Yunus, S., Mustafa, Ö., Hasan, S., Serin, S., & Kadir, A. (2010). Biodiesel production from ricinus communis oil and its blends with soybean biodiesel. Strojniški vestnik - Journal of Mechanical Engineering, 56(12), 811-816.
  • Patel, R. P., Nagababu, G., Kumar, S. V. V. A., M., S., & Kachhwah, S. S. (2020). Wave resource assessment and wave energy exploitation along the Indian coast. Ocean Engineering 217, 107834.
  • Satthong, S., Saego, K., Kitrungloadjanaporn, P., Nuttavut, N., Amornsamankul, S., & Triampo, W. (2019). Modeling the effects of light sources on the growth of algae. Advances in Difference Equations, 170.
  • Schmidt, J. J., Gagnon, G. A., & Jamieson, R. C. (2016). Microalgae growth and phosphorus uptake in wastewater under simulated cold region conditions. Ecological Engineering 95, 588-593.
  • Shuirong, T., Cheng, W., Hu, R., Guigue, J., Hattori, S., Tawaraya, K., Hasegawa, T. (2021). Five-year soil warming changes soil C and N dynamics in a single rice paddy field in Japan. Science of the Total Environment 756, 143845.
  • Singh, S. P., & Priyanka, S. (2015). Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews, 50, 431-444.
  • Singh, S. P., & Singh, P. (2015). Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews 50, 431-444.
  • Sun, X., Cao, Y., Xu, H., Liu, Y., Sun, J., Qiao, D., & Cao, Y. (2014). Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresource Technology, 155, 204-212.
  • Tae Hyeong, K., Lee, Y., Han, S.-H., & Hwang, S.-J. (2013). The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology 130, 75-80.
  • Uthirapandi, V., Suriya, S., Boomibalagan, P., Eswaran, S., Ramya, S. S., Vijayanand, N., & Kathiresan, D. (2018). Bio-fertilizer potential of seaweed liquid extracts of marine macro algae on growth and biochemical parameters of Ocimum sanctum Journal of Pharmacognosy and Phytochemistry, 7(3), 3528-2532.
  • Vree, J. H. d., Bosma, R., Janssen, M., Barbosa, M. J., & Wijffels, R. H. (2015). Comparison of four outdoor pilot-scale photobioreactors. Biotechnology for Biofuels, 8, 215.
  • Wahidin, S., Idris, A., & Shaleh, S. R. M. (2013). The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology, 129, 7-11.
  • Warren, A., Esteban, G. F., & Finlay, B. J. (2016). Protozoa. In Thorp and Covich’s Freshwater Invertebrates.
  • Warren, M., Deery, E., Warren, M., Croft, M., & Smith, A. (2007). Algae acquire Vitamin B12 through a symbiotic relationship with bacteria. Nature, 438, 90-93.
  • Wenhua, G., Kefu, C., Jinsong, Z., Jun, X., & Bin, W. (2017). Thermal pyrolysis characteristics of macroalgae Cladophora glomerata. Bioresource Technology, 243, 212–217.
  • Yaduvanshi, A., Bendapudi, R., Nkemelang, T., & New, M. (2021). Temperature and rainfall extremes change under current and future warming global warming levels across Indian climate zone. Weather and Climate Extremes, 31, 100291.
  • Yoshioka, M., Yago, T., Yoshie-Stark, Y., Arakawa, H., & Morinaga, T. (2012). Effect of high frequency of intermittent light on the growth and fatty acid profile of Isochrysis galbana. Aquaculture 338, 111-117.
  • Zamalloa, C., Boon, N., & Verstraete, W. (2013). Decentralized two-stage sewage treatment by chemical–biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresource Technology 130, 152–160.
  • Zhang, Q. L. Y., Mieghem, A. V., Chen, Y.-C., Yu, N., Yang, Y., & Yin, H. (2020). Design and experiment of a sun-powered smart building envelope with automatic control. Energy & Buildings, 223, 110173.
  • Zhoua, B., Or, S. W., Chan, K. W., Duan, H., Wu, Q., Wang, H., & Meng, Y. (2021). Short-term prediction of wind power and its ramp events based on semisupervised generative adversarial network. Electrical Power and Energy Systems 125, 106411.

Fotobiyoreaktörde Işığın ve Beslemenin Alglerin Büyümeleri Üzerine Etkilerinin Araştırılması

Year 2021, , 475 - 480, 30.04.2021
https://doi.org/10.31590/ejosat.859107

Abstract

Dünya nüfusunun çoğalmasına bağlı olarak gıda ve enerji ihtiyaçları da artmaktadır. Enerji ve gıda tüketimi karbondioksit salınım miktarının yükselmesi ile yakından alakalıdır. Karbondioksit miktarının artması Sera gazı etkisi göstererek küresel ısınmaya sebep olmakta böylece doğal afetler yaşanmaktadır. Sera gazı etkisinin azaltılması için fosil kaynaklara alternatif enerji kaynakları bulunmalı ve atıkların sürdürülebilir şekilde kontrol edilerek geri dönüşüme kazandırılması gerekmektedir. Alternatif enerji kaynakları olarak biyogaz, biyodizel, güneş enerjisi gibi yenilenebilir enerji kaynakları yoğun şekilde araştırılmaktadır. Algler, alternatif gıda ve enerji ihtiyacını karşılamak için araştırılan kaynaklar arasında yer almaktadır. Bu canlılar, genel olarak ökaryotik fotosentez yapabilen canlıların genel tanımlamasıdır ve bu sınıf içerisinde çok farklı alt türleri bulunmaktadır. Yapılan çalışmalarda, 1 kg kuru alg oluşumu sırasında 1.83 kg CO2 tükettiği, yağ protein kaynağı ve organik gübre olarak kullanılabildiği görülmüştür. CO2 tüketim miktarının yüksek olması, alternatif besin ve yenilenebilir enerji kaynağı gibi farklı amaçlar için kullanılma potansiyelinden dolayı Alglerin uygun yaşam alanlarının belirlenmesi gerekmektedir.
Yapılan bu çalışmada, hava karıştırmalı kolon tipi pilot fotobiyoreaktör imalatı yapılmıştır model alg üzerinde, ışığın ve beslenmenin büyüme üzerine etkileri araştırılmıştır. Model alg olarak ‘’Cladhopora glomerata’’ kullanılmıştır. Besleme için, inorganik tuzlar, %17’lik doğal kaynaklardan elde edilen amino asit çözeltisi ve 425 nm dalga boyuna sahip ışığın alglerdeki kütle artışı üzerine etkileri araştırılmıştır. Elde edilen sonuçlar, alglerin 425 nm dalga boyundaki (mor ışık) kütle artışı gün ışığındaki ışığa göre kıyaslandığında daha fazla kütle artışı gözlemlenmiştir. Bunun dışında alglerin kütle artışı beslemelerine göre kıyaslandığında %17 lik doğal amino asit kaynağı ile besleme yapıldığında inorganik tuzlara göre kütlece artışının daha fazla olduğu gözlemlenmiştir.

References

  • A. Ruiz, M., Garcia, N. M., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247–253.
  • Abdelhakeem, E., Abou-Zaid, A., & Eissa, M. A. (2019). Thompson Seedless Grapevines Growth and Quality as Affected by Glutamic Acid, Vitamin B, and Algae. Journal of Soil Science and Plant Nutrition, 19, 725-733.
  • Bahadur, A., Zubair, M., & Khan, M. B. (2013). Design, construction and evaluation of solarized airlift tubular photobioreactor. Journal of Physics: Conference Series, 439, 012036.
  • Bedoi, R., Juri, F., Cosi, B., Puksec, T., Cucek, L., & Duic, N. (2020). Beyond energy crops and subsidised electricity e A study on sustainable biogas production and utilisation in advanced energy markets. Energy, 201, 117651.
  • Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217-226.
  • Corrie, M., & Fernando, D. S. (2020). Impacts of global warming on southern California's winegrape climate suitability. Advances in Climate Change Research, 11, 279-293.
  • Dalle, M. A., & Arnaudis, J. (2017). France Patent No.: W. (PCT).
  • Daume, S., Long, B. M., & Crouch, P. (2003). Changes in amino acid content of an algal feed species (Navicula sp.) and their effect on growth and survival of juvenile abalone (Haliotis rubra). Journal of Applied Phycology, 15, 201-207.
  • Dineshbabu, G., Goswamia, G., Kumara, R., Sinhaa, A., & Das, D. (2019). Microalgae–nutritious, sustainable aqua- and animal feed source. Journal of Functional Foods 62, 103545.
  • Farid, S., Omid, N., & Ahmad, T. (2016). Hydrothermal gasification of Cladophora glomerata macroalgae over its hydrochar as a catalyst for hydrogen-rich gas production. Bioresource Technology 222, 232-241.
  • Feng, P., Deng, Z., Fan, L., & Hu, Z. (2012). Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. Journal of Bioscience and Bioengineering, 114, 405-410.
  • Finlay, B. J., & Esteban, G. F. (2013). Protozoa. In (Vol. 6). Elsevier: Encyclopedia of Biodiversity.
  • Franz, B., Retze, A., Schmid-Staiger, U., Trösch, W., & Zastrow, A. (2000). E. P. Office.
  • Gobler, C. J., Norman, C., Panzeca, C., Taylor, G. T., & Sañudo-Wilhelmy, S. A. (2007). Effect of B-vitamins (B1, B12) and inorganic nutrients on algal bloom dynamics in a coastal ecosystem. Aquatic Microbial Ecology, 49, 181-194.
  • Hasan, N., Ahmad, T., & Sajedeh, J. (2020). Investigating the influence of acid washing pretreatment and Zn/activated biochar catalyst on thermal conversion of Cladophora glomerata to value-added bio-products. Energy Conversion and Management 225, 113392.
  • James, C. M., Al-Hınty, S., & Salman, A. E. (1989). Growth and m3 Fatty Acid and Amino Acid Composition of Microalgae Under Different Temperature Regimes. Aquaculture, 77, 337-351.
  • JeanCalleja, A., Kathleen, E., & Neville, C. (2020). The effect of global warming on mortality. Early Human Development, in press.
  • Jianke, H., Li, Y., Wan, M., Yan, Y., Feng, F., Qu, X., Wang, W. (2014). Novel flat-plate photobioreactors for microalgae cultivation with special mixers to promote mixing along the light gradient. Bioresource Technology, 159, 8-16.
  • Jörg, D., Uebele, A., Retze, A., Trösch, W., & Schmid-Staiger, U. (2001). A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. Journal of Biotechnology, 92, 89-94.
  • Junchen, X., Jun, C., Xin, K., Xu, J., & Yang, W. (2020). Developing a Spiral-Ascending CO2 Dissolver to Enhance CO2 Mass Transfer in a Horizontal Tubular Photobioreactor for Improved Microalgal Growth. ACS Sustainable Chemistry & Engineering, 8(51), 18926–18935.
  • K. M. Nazmul, I., Kenway, S. J., Marguerite, A. R., Ka Leung, L., & Thomas, W. (2021). A review of the water-related energy consumption of the food system in nexus studies. Journal of Cleaner Production, 279, 123414.
  • Karolina, K., Bogusława, Ł., & Piotr Paweł, W. (2020). Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Research, 48, 101912.
  • Kim, D. G., Lee, C., Park, S.-M., & Choi, Y.-E. (2014). Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris. Bioresource Technology 159, 240-248.
  • Lin-lin, W., Tao, Y., & Mao, X.-z. (2014). A novel flat plate algal bioreactor with horizontal baffles: Structural optimization and cultivation performance. Bioresource Technology 164, 20–27.
  • Lindsey, R. (2021). Climate Change: Atmospheric Carbon Dioxide. Retrieved from
  • Lopamudra, P., Bhattacharjee, V., Mitra, R., Bhattacharya, I., & Chowdhury, R. (2015). Biosequestration of CO2 using power plant algae (Rhizocloniumhieroglyphicum JUCHE2) in a Flat Plate hotobio-Bubble-Reactor –Experimental and modeling. Chemical Engineering Journal, 275, 381-390.
  • Mehran, P., Hamoon, J., Maryam, P., Reza, G., & MohammadAli, A. (2018). Hydrothermal liquefaction of Gracilaria gracilis and Cladophora glomerata macro-algae for biocrude production. Bioresource Technology, 250, 26-34.
  • Michael, C., Ninno, M. d., Gross, M., & Wen, Z. (2015). Use of wavelength-selective optical light filters for enhanced microalgal growth in different algal cultivation systems. Bioresource Technology, 179, 473-482.
  • Minoo, J., & Palsson, B. (1991). High-Density Photoautotrophic Algal Cultures: Design, Construction, and Operation of a Novel Photobioreactor System. Biotechnology and Bioengineering, 1182-1189.
  • Mohsenpour, S. F., Richards, B., & Willoughby, N. (2012). Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresource Technology, 125, 75-81.
  • Mohsenpour, S. F., & Willoughby, N. (2013). Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresource Technology, 142, 147-153.
  • Molina, E. G., Fernandez, J., Acien, F. G., & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology 92, 113-131.
  • Oğuz Yunus, S., Mustafa, Ö., Hasan, S., Serin, S., & Kadir, A. (2010). Biodiesel production from ricinus communis oil and its blends with soybean biodiesel. Strojniški vestnik - Journal of Mechanical Engineering, 56(12), 811-816.
  • Patel, R. P., Nagababu, G., Kumar, S. V. V. A., M., S., & Kachhwah, S. S. (2020). Wave resource assessment and wave energy exploitation along the Indian coast. Ocean Engineering 217, 107834.
  • Satthong, S., Saego, K., Kitrungloadjanaporn, P., Nuttavut, N., Amornsamankul, S., & Triampo, W. (2019). Modeling the effects of light sources on the growth of algae. Advances in Difference Equations, 170.
  • Schmidt, J. J., Gagnon, G. A., & Jamieson, R. C. (2016). Microalgae growth and phosphorus uptake in wastewater under simulated cold region conditions. Ecological Engineering 95, 588-593.
  • Shuirong, T., Cheng, W., Hu, R., Guigue, J., Hattori, S., Tawaraya, K., Hasegawa, T. (2021). Five-year soil warming changes soil C and N dynamics in a single rice paddy field in Japan. Science of the Total Environment 756, 143845.
  • Singh, S. P., & Priyanka, S. (2015). Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews, 50, 431-444.
  • Singh, S. P., & Singh, P. (2015). Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews 50, 431-444.
  • Sun, X., Cao, Y., Xu, H., Liu, Y., Sun, J., Qiao, D., & Cao, Y. (2014). Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresource Technology, 155, 204-212.
  • Tae Hyeong, K., Lee, Y., Han, S.-H., & Hwang, S.-J. (2013). The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology 130, 75-80.
  • Uthirapandi, V., Suriya, S., Boomibalagan, P., Eswaran, S., Ramya, S. S., Vijayanand, N., & Kathiresan, D. (2018). Bio-fertilizer potential of seaweed liquid extracts of marine macro algae on growth and biochemical parameters of Ocimum sanctum Journal of Pharmacognosy and Phytochemistry, 7(3), 3528-2532.
  • Vree, J. H. d., Bosma, R., Janssen, M., Barbosa, M. J., & Wijffels, R. H. (2015). Comparison of four outdoor pilot-scale photobioreactors. Biotechnology for Biofuels, 8, 215.
  • Wahidin, S., Idris, A., & Shaleh, S. R. M. (2013). The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology, 129, 7-11.
  • Warren, A., Esteban, G. F., & Finlay, B. J. (2016). Protozoa. In Thorp and Covich’s Freshwater Invertebrates.
  • Warren, M., Deery, E., Warren, M., Croft, M., & Smith, A. (2007). Algae acquire Vitamin B12 through a symbiotic relationship with bacteria. Nature, 438, 90-93.
  • Wenhua, G., Kefu, C., Jinsong, Z., Jun, X., & Bin, W. (2017). Thermal pyrolysis characteristics of macroalgae Cladophora glomerata. Bioresource Technology, 243, 212–217.
  • Yaduvanshi, A., Bendapudi, R., Nkemelang, T., & New, M. (2021). Temperature and rainfall extremes change under current and future warming global warming levels across Indian climate zone. Weather and Climate Extremes, 31, 100291.
  • Yoshioka, M., Yago, T., Yoshie-Stark, Y., Arakawa, H., & Morinaga, T. (2012). Effect of high frequency of intermittent light on the growth and fatty acid profile of Isochrysis galbana. Aquaculture 338, 111-117.
  • Zamalloa, C., Boon, N., & Verstraete, W. (2013). Decentralized two-stage sewage treatment by chemical–biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresource Technology 130, 152–160.
  • Zhang, Q. L. Y., Mieghem, A. V., Chen, Y.-C., Yu, N., Yang, Y., & Yin, H. (2020). Design and experiment of a sun-powered smart building envelope with automatic control. Energy & Buildings, 223, 110173.
  • Zhoua, B., Or, S. W., Chan, K. W., Duan, H., Wu, Q., Wang, H., & Meng, Y. (2021). Short-term prediction of wind power and its ramp events based on semisupervised generative adversarial network. Electrical Power and Energy Systems 125, 106411.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Nergiz Uçmaz 0000-0002-6543-7137

Batuhan Sert This is me 0000-0002-8936-637X

Cemalettin Aygün 0000-0002-6033-3558

Oguz Sarıbıyık 0000-0001-9735-8735

Publication Date April 30, 2021
Published in Issue Year 2021

Cite

APA Uçmaz, N., Sert, B., Aygün, C., Sarıbıyık, O. (2021). Fotobiyoreaktörde Işığın ve Beslemenin Alglerin Büyümeleri Üzerine Etkilerinin Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(23), 475-480. https://doi.org/10.31590/ejosat.859107