Research Article
BibTex RIS Cite

Kalıcı Mıknatıslı Senkron Generatörlü Rüzgâr Enerjisi Dönüşüm Sistemlerinde Maksimum Güç Kontrolünün Akıllı Yapı Tabanlı Modellemesi

Year 2021, , 219 - 225, 15.04.2021
https://doi.org/10.31590/ejosat.898952

Abstract

Rüzgâr enerjisi, elektrik üretiminde kullanımı giderek artan yenilenebilir bir enerji kaynağıdır. Rüzgârdan elektrik enerjisinin üretiminde kullanılan sistemin verimliliği, uygun elemanların ve kontrol tekniğinin seçimine bağlıdır. Bu tür dönüşüm sistemlerinde, değişken hızlı rüzgâr türbinleriyle doğrudan bağlantılı olarak kullanılabilen kalıcı mıknatıslı senkron generatörler ön plana çıkmaktadır. Bu generatörler, elektriksel kayıpları ve mekanik bileşenlere bağımlılığı azaltarak genel sistem performansını yükseltme özelliğine sahiptir. Dönüşüm sistemlerinde sistemin anlık çalışma hızı ayarlanarak yapılan kontrol maksimum güç noktası izleme kontrolü olarak tanımlanmaktadır. Bu kontrol, anlık rüzgâra göre sistemin üretim verimliliği en üst düzeyde tutarak daha uzun ömürlü ve daha az maliyetli enerji üretimi sağlayabilir. Bu çalışmada, rüzgâr enerjisi dönüşüm sistemi ve maksimum güç noktası izleme kontrolünün temel prensibi açıklanmış. Akıllı kontrol yapısı olarak tanımlanan bulanık mantık kontrolü Matlab/Simulink ortamında modellenerek çeşitli sistem büyüklükleri üzerinden kontrol yapısının analizi gerçekleştirilmiştir. Bu kontrol yapısı, değişken rüzgâr profiline göre dönüşüm sisteminin daha kararlı ve daha verimli çalışmasını sağlamıştır.

References

  • Tammaruckwattana, S., Ohyama, K. (2013). Modeling and simulation of permanent magnet synchronous generator wind power generation system using boost converter circuit. In 2013 15th European Conference on Power Electronics and Applications (EPE), pp. 1-10.
  • Sharma, H. K., Samaria, A., & Gidwani, L. (2017). Designing and performance analysis of controller for PMSG based wind energy conversion system. In 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), pp. 1-6. IEEE.
  • Abbaker, O. (2017). Control of wind turbine for variable speed based on fuzzy-PID controller. Journal of Engineering and Computer Science (JECS), cilt 18(1), pp. 40-51.
  • Prajapati, K. R. (2019). Application of fuzzy logic for MPPT control in stand-alone wind energy conversion system with a battery storage system. In 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), pp. 1-6.
  • Shahi, A., & Bhattacharjee, C. (2018). A study & analysis of fuzzy based P&O MPPT scheme in PMSG based wind turbine. In 2018 Technologies for Smart-City Energy Security and Power (ICSESP), pp. 1-4
  • Tiwari, R., & Babu, N. R. (2016). Fuzzy logic based MPPT for permanent magnet synchronous generator in wind energy conversion system. IFAC-PapersOnLine, cilt 49(1), ss.462-467.
  • Putri, A. I., Ahn, M., & Choi, J. (2012). Speed sensorless fuzzy MPPT control of grid-connected PMSG for wind power generation. In 2012 International Conference on Renewable Energy Research and Applications (ICRERA), pp. 1-6.
  • Ngo, Q. V., Yi, C., & Nguyen, T. T. (2020). The maximum power point tracking based-control system for small-scale wind turbine using fuzzy logic. International Journal of Electrical and Computer Engineering (IJECE), cilt 10(4), pp. 3927-3935.
  • Wu, B., Lang, Y., Zargari, N., & Kouro, S. (2011). Power conversion and control of wind energy systems (Vol. 76). John Wiley & Sons, New York
  • Rolan, A., Luna, A., Vazquez, G., Aguilar, D., & Azevedo, G. (2009). Modeling of a variable speed wind turbine with a permanent magnet synchronous generator. In 2009 IEEE international symposium on industrial electronics, pp. 734-739.
  • Patel, M. R. (2005). Wind and solar power systems: design, analysis, and operation. CRC press, New York.
  • Percin H.B., Caliskan A. (2020). Modelıng And Analysıs Of Pıtch Angle Control On Varıable Speed Wınd Turbınes, In 2020 International Engineering and Natural Sciences Conference (IENSC), pp. 131-140.
  • Sahu, D. (2013). Maximum power extraction for direct driven variable speed wind turbine system using PMSG and fixed pitch angle. In 2013 International Conference on Control, Computing, Communication and Materials (ICCCCM), pp. 1-7.
  • Abdullah, M. A., Yatim, A. H. M., Tan, C. W., & Saidur, R. (2012). A review of maximum power point tracking algorithms for wind energy systems. Renewable and sustainable energy reviews, cilt 16(5), ss. 3220-3227.
  • Thongam, J. S., & Ouhrouche, M. (2011). MPPT control methods in wind energy conversion systems. Fundamental and advanced topics in wind power, (1), ss. 339-360
  • Lee, J., Kim, Y. S. (2016). Sensorless fuzzy-logic-based maximum power point tracking control for a small-scale wind power generation systems with a switched-mode rectifier. IET Renewable Power Generation, cilt 10(2), ss.194-202.
  • Simoes, M., Bose, B. K., & Spiegel, R. J. (1997). Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system. IEEE Transactions on Industry Applications, cilt 33(4), ss. 956-965.

Intelligent Structure Based Modelling of Maximum Power Control in Wind Energy Conversion Systems with Permanent Magnet Synchronous Generator

Year 2021, , 219 - 225, 15.04.2021
https://doi.org/10.31590/ejosat.898952

Abstract

Wind energy is a renewable energy source increasingly used in electricity generation. System efficiency in electrical energy production from wind depends on the selection of suitable components and control technique. In this type of conversion systems, Permanent magnet synchronous generators, which can be used directly connected to variable speed wind turbines, come to the fore. These generators have the ability to increase overall system performance by reducing electrical losses and dependency on mechanical components. The control performed in conversion systems by adjusting the instant operating speed of the system is defined as the maximum power point tracking control. This control can provide more durable and less costly energy production by keeping the production efficiency of the system at the highest level according to the instant wind. In this study; wind energy conversion system and basic principle of maximum power point tracking control were explained. Fuzzy logic control, defined as an intelligent control structure, was analyzed based on various system parameters through modelling in Matlab/Simulink environment. This control structure enabled the conversion system to operate more stable and more efficiently according to the variable wind speed profile. 

References

  • Tammaruckwattana, S., Ohyama, K. (2013). Modeling and simulation of permanent magnet synchronous generator wind power generation system using boost converter circuit. In 2013 15th European Conference on Power Electronics and Applications (EPE), pp. 1-10.
  • Sharma, H. K., Samaria, A., & Gidwani, L. (2017). Designing and performance analysis of controller for PMSG based wind energy conversion system. In 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), pp. 1-6. IEEE.
  • Abbaker, O. (2017). Control of wind turbine for variable speed based on fuzzy-PID controller. Journal of Engineering and Computer Science (JECS), cilt 18(1), pp. 40-51.
  • Prajapati, K. R. (2019). Application of fuzzy logic for MPPT control in stand-alone wind energy conversion system with a battery storage system. In 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), pp. 1-6.
  • Shahi, A., & Bhattacharjee, C. (2018). A study & analysis of fuzzy based P&O MPPT scheme in PMSG based wind turbine. In 2018 Technologies for Smart-City Energy Security and Power (ICSESP), pp. 1-4
  • Tiwari, R., & Babu, N. R. (2016). Fuzzy logic based MPPT for permanent magnet synchronous generator in wind energy conversion system. IFAC-PapersOnLine, cilt 49(1), ss.462-467.
  • Putri, A. I., Ahn, M., & Choi, J. (2012). Speed sensorless fuzzy MPPT control of grid-connected PMSG for wind power generation. In 2012 International Conference on Renewable Energy Research and Applications (ICRERA), pp. 1-6.
  • Ngo, Q. V., Yi, C., & Nguyen, T. T. (2020). The maximum power point tracking based-control system for small-scale wind turbine using fuzzy logic. International Journal of Electrical and Computer Engineering (IJECE), cilt 10(4), pp. 3927-3935.
  • Wu, B., Lang, Y., Zargari, N., & Kouro, S. (2011). Power conversion and control of wind energy systems (Vol. 76). John Wiley & Sons, New York
  • Rolan, A., Luna, A., Vazquez, G., Aguilar, D., & Azevedo, G. (2009). Modeling of a variable speed wind turbine with a permanent magnet synchronous generator. In 2009 IEEE international symposium on industrial electronics, pp. 734-739.
  • Patel, M. R. (2005). Wind and solar power systems: design, analysis, and operation. CRC press, New York.
  • Percin H.B., Caliskan A. (2020). Modelıng And Analysıs Of Pıtch Angle Control On Varıable Speed Wınd Turbınes, In 2020 International Engineering and Natural Sciences Conference (IENSC), pp. 131-140.
  • Sahu, D. (2013). Maximum power extraction for direct driven variable speed wind turbine system using PMSG and fixed pitch angle. In 2013 International Conference on Control, Computing, Communication and Materials (ICCCCM), pp. 1-7.
  • Abdullah, M. A., Yatim, A. H. M., Tan, C. W., & Saidur, R. (2012). A review of maximum power point tracking algorithms for wind energy systems. Renewable and sustainable energy reviews, cilt 16(5), ss. 3220-3227.
  • Thongam, J. S., & Ouhrouche, M. (2011). MPPT control methods in wind energy conversion systems. Fundamental and advanced topics in wind power, (1), ss. 339-360
  • Lee, J., Kim, Y. S. (2016). Sensorless fuzzy-logic-based maximum power point tracking control for a small-scale wind power generation systems with a switched-mode rectifier. IET Renewable Power Generation, cilt 10(2), ss.194-202.
  • Simoes, M., Bose, B. K., & Spiegel, R. J. (1997). Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system. IEEE Transactions on Industry Applications, cilt 33(4), ss. 956-965.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hasan Bektaş Perçin 0000-0001-8968-969X

Abuzer Çalışkan 0000-0001-8262-7912

Publication Date April 15, 2021
Published in Issue Year 2021

Cite

APA Perçin, H. B., & Çalışkan, A. (2021). Kalıcı Mıknatıslı Senkron Generatörlü Rüzgâr Enerjisi Dönüşüm Sistemlerinde Maksimum Güç Kontrolünün Akıllı Yapı Tabanlı Modellemesi. Avrupa Bilim Ve Teknoloji Dergisi(24), 219-225. https://doi.org/10.31590/ejosat.898952