Research Article
BibTex RIS Cite

Temassız Manyetik Mikro Manipülasyon için Bernoulli Denklemine Dayalı Robotik Model

Year 2021, , 47 - 52, 15.04.2021
https://doi.org/10.31590/ejosat.899657

Abstract

Mikro manipülasyon, biyomedikal mikro robotik uygulamaların önemli bir parçasıdır. Canlı hücreler ile yapilan testler, yapısal bütünlüklerinden ödün vermemek için numunelerin hassas bir şekilde işlenmesini gerektirir. Hidrodinamik etkileşimler yoluyla temassız mikro manipülasyon, alternatif bir güvenilir yöntem olarak öne çıkmaktadir. Literatürde bu tür mikro robotik sistemlerin kullanımını gösteren çok sayıda sayısal ve deneysel çalışma bulunmaktadır. Ayrıca, temassız manipülasyonu açıklayan analitik modeller, katı cisim hareketi için atalet kuvvetleri ile birlikte yüksek mertebeden etkilere veya arayüzey etkileşimlerine dayanmaktadır. Bu çalışmada, dönen bir manyetik parçacık tarafından indüklenen zorlanmış bir girdabın akış alanı, hareket denkleminde örtük olarak uygulanan Magnus etkisi ile birlikte akış çizgileri boyunca enerjinin korunumu yardımıyla modellenmiştir. Manyetik olmayan bir partikül, indüklenen akış tarafından sürüklenecek şekilde modellenmesine rağmen, akış çizgilerinin bozulmadığı varsayılmaktadır. Manyetik olmayan parçacığın rijit cisim hareketi, radyal yön boyunca sürükleme katsayıları ve basınç farkı yardımıyla elde edilmektedir. Ve basınç farkı, parçacığın ekseni boyunca katı cisim dönüşü ile birlikte hesaplanmaktadır. Sonuçlar, sabit radyal konuma sahip kararlı bir yörüngeye işaret ederken, manyetik olmayan parçacık, zorlanmış girdabın çekirdeği etrafında bir tam dönüşü tamamlar. Ayrıca, mayetik adım atlama durumunda partiküllerin katı cisim hareketinin stabilitesinin zarar görmediği gözlemlenmiştir.

References

  • Zhang, Z., Wang, X., Liu, J., Dai, C., & Sun, Y. (2019). Robotic Micromanipulation: Fundamentals and Applications. Annual Review of Control, Robotics, and Autonomous Systems, 2(1), 181–203. https://doi.org/10.1146/annurev-control-053018-023755
  • Diller, E., Ye, Z., Giltinan, J., & Sitti, M. (2014). Addressing of Micro-robot Teams and Non-contact Micro-manipulation. Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications, 28–38. https://doi.org/10.1007/978-3-642-55134-5_3
  • Zhang, Y., Lin, S., Liu, Z., Zhang, Y., Zhang, J., Yang, J., & Yuan, L. (2020). Laser-induced rotary micromotor with high energy conversion efficiency. Photonics Research, 8(4), 534. https://doi.org/10.1364/prj.381397
  • Mohanty, S., Khalil, I. S. M., & Misra, S. (2020). Contactless acoustic micro/nano manipulation: a paradigm for next generation applications in life sciences. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2243), 20200621. https://doi.org/10.1098/rspa.2020.0621
  • Diller, E., Ye, Z., & Sitti, M. (2011, September). Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/iros.2011.6094968
  • Ye, Z., Diller, E., & Sitti, M. (2012). Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators. Journal of Applied Physics, 112(6), 064912. https://doi.org/10.1063/1.4754521
  • Pieters, R. S., Tung, H.-W., Sargent, D. F., & Nelson, B. J. (2014). Non-contact Manipulation for Automated Protein Crystal Harvesting using a Rolling Microrobot. IFAC Proceedings Volumes, 47(3), 7480–7485. https://doi.org/10.3182/20140824-6-za-1003.00398
  • Zhang, S., Scott, E. Y., Singh, J., Chen, Y., Zhang, Y., Elsayed, M., Chamberlain, M. D., Shakiba, N., Adams, K., Yu, S., Morshead, C. M., Zandstra, P. W., & Wheeler, A. R. (2019). The optoelectronic microrobot: A versatile toolbox for micromanipulation. Proceedings of the National Academy of Sciences, 116(30), 14823–14828. https://doi.org/10.1073/pnas.1903406116
  • Floyd, S., Pawashe, C., & Sitti, M. (2009). Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot. IEEE Transactions on Robotics, 25(6), 1332–1342. https://doi.org/10.1109/tro.2009.2028761
  • Fan, X., Sun, M., Lin, Z., Song, J., He, Q., Sun, L., & Xie, H. (2018). Automated Noncontact Micromanipulation Using Magnetic Swimming Microrobots. IEEE Transactions on Nanotechnology, 17(4), 666–669. https://doi.org/10.1109/tnano.2018.2797325
  • Steager, E. B., Selman Sakar, M., Magee, C., Kennedy, M., Cowley, A., & Kumar, V. (2013). Automated biomanipulation of single cells using magnetic microrobots. The International Journal of Robotics Research, 32(3), 346–359. https://doi.org/10.1177/0278364912472381
  • Koens, L., Wang, W., Sitti, M., & Lauga, E. (2019). The near and far of a pair of magnetic capillary disks. Soft Matter, 15(7), 1497–1507. https://doi.org/10.1039/c8sm02215a
  • Li, X., & Fukuda, T. (2020). Magnetically Guided Micromanipulation of Magnetic Microrobots for Accurate Creation of Artistic Patterns in Liquid Environment. Micromachines, 11(7), 697. https://doi.org/10.3390/mi11070697
  • Ye, Z., & Sitti, M. (2014). Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. Lab Chip, 14(13), 2177–2182. https://doi.org/10.1039/c4lc00004h
  • Higdon, J. J. L., & Muldowney, G. P. (1995). Resistance functions for spherical particles, droplets and bubbles in cylindrical tubes. Journal of Fluid Mechanics, 298, 193–210. https://doi.org/10.1017/s0022112095003272
  • Mastrangeli, M., Valsamis, J.-B., Van Hoof, C., Celis, J.-P., & Lambert, P. (2010). Lateral capillary forces of cylindrical fluid menisci: a comprehensive quasi-static study. Journal of Micromechanics and Microengineering, 20(7), 075041. https://doi.org/10.1088/0960-1317/20/7/075041
  • Wang, S., & Ardekani, A. M. (2012). Unsteady swimming of small organisms. Journal of Fluid Mechanics, 702, 286–297. https://doi.org/10.1017/jfm.2012.177
  • Dong, F., Huang, Z., Qiu, D., Hao, L., Wu, W., & Jin, Z. (2019). Design and Analysis of a Small-Scale Linear Propulsion System for Maglev Applications (1)—The Overall Design Process. IEEE Transactions on Applied Superconductivity, 29(2), 1–5. https://doi.org/10.1109/tasc.2019.2895337
  • Munson, B. R., Young, D. F., & Okiishi, T. H. (2005). Fundamentals of Fluid Mechanics (5th ed.). Wiley.
  • Cipparrone, G., Hernandez, R. J., Pagliusi, P., & Provenzano, C. (2011). Magnus force effect in optical manipulation. Physical Review A, 84(1), 015802. https://doi.org/10.1103/physreva.84.015802
  • Berg, H. C. (1993). Random Walks in Biology: New and Expanded Edition (Revised ed.). Princeton University Press.
  • Mahoney, A. W., Nelson, N. D., Peyer, K. E., Nelson, B. J., & Abbott, J. J. (2014). Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems. Applied Physics Letters, 104(14), 144101. https://doi.org/10.1063/1.4870768
  • Ergin, F. G., Tabak, A. F., Wang, W., & Sitti, M. (2017, June). Time-resolved measurements of the free surface motion due to spinning micro-rafts using Stereo MicroPIV. Www.Dantecdynamics.Com. https://www.dantecdynamics.com/wp-content/uploads/2019/11/time-resolved_measurements_of_the_free_surface_motion_due_to_spinning_micro-rafts_using_stereo_micropiv-1.pdf

Bernoulli-Equation-Based Robotic Model for Non-Contact Magnetic Micromanipulation

Year 2021, , 47 - 52, 15.04.2021
https://doi.org/10.31590/ejosat.899657

Abstract

Micromanipulation is an important part of biomedical micro-robotic applications. The lab-on-a-chip applications with live cells and require delicate handling of samples to not compromise their structural integrity. The non-contact micromanipulation via hydrodynamic interactions stands out as an alternative reliable method to avoid this problem. There are several numerical and experimental studies in the literature demonstrating the use of such micro-robotic systems. Furthermore, the analytical models explaining the non-contact manipulation rely on higher-order effects or interfacial interactions along with the inertial forces for rigid-body motion. In this study, the flow field of a free vortex, induced by a rotating magnetic particle, is modeled with the help of conservation of energy across the curvilinear streamlines along with the Magnus effect implicitly implemented in the equation of motion. The streamlines are assumed to be undisturbed although a non-magnetic particle is modeled to be dragged by the induced flow. The rigid body motion of the non-magnetic particle is obtained with the help of drag coefficients and pressure difference along the radial direction. And the pressure difference is predicted along with the rigid-body rotation of the particle along its axis. The results indicate a stable orbit with a constant radial position while the non-magnetic particle completes one full revolution around the core of the free vortex. Furthermore, it has been observed that the step-out phenomenon does not undermine the stability of the rigid-body motion of the particles.

References

  • Zhang, Z., Wang, X., Liu, J., Dai, C., & Sun, Y. (2019). Robotic Micromanipulation: Fundamentals and Applications. Annual Review of Control, Robotics, and Autonomous Systems, 2(1), 181–203. https://doi.org/10.1146/annurev-control-053018-023755
  • Diller, E., Ye, Z., Giltinan, J., & Sitti, M. (2014). Addressing of Micro-robot Teams and Non-contact Micro-manipulation. Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications, 28–38. https://doi.org/10.1007/978-3-642-55134-5_3
  • Zhang, Y., Lin, S., Liu, Z., Zhang, Y., Zhang, J., Yang, J., & Yuan, L. (2020). Laser-induced rotary micromotor with high energy conversion efficiency. Photonics Research, 8(4), 534. https://doi.org/10.1364/prj.381397
  • Mohanty, S., Khalil, I. S. M., & Misra, S. (2020). Contactless acoustic micro/nano manipulation: a paradigm for next generation applications in life sciences. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2243), 20200621. https://doi.org/10.1098/rspa.2020.0621
  • Diller, E., Ye, Z., & Sitti, M. (2011, September). Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/iros.2011.6094968
  • Ye, Z., Diller, E., & Sitti, M. (2012). Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators. Journal of Applied Physics, 112(6), 064912. https://doi.org/10.1063/1.4754521
  • Pieters, R. S., Tung, H.-W., Sargent, D. F., & Nelson, B. J. (2014). Non-contact Manipulation for Automated Protein Crystal Harvesting using a Rolling Microrobot. IFAC Proceedings Volumes, 47(3), 7480–7485. https://doi.org/10.3182/20140824-6-za-1003.00398
  • Zhang, S., Scott, E. Y., Singh, J., Chen, Y., Zhang, Y., Elsayed, M., Chamberlain, M. D., Shakiba, N., Adams, K., Yu, S., Morshead, C. M., Zandstra, P. W., & Wheeler, A. R. (2019). The optoelectronic microrobot: A versatile toolbox for micromanipulation. Proceedings of the National Academy of Sciences, 116(30), 14823–14828. https://doi.org/10.1073/pnas.1903406116
  • Floyd, S., Pawashe, C., & Sitti, M. (2009). Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot. IEEE Transactions on Robotics, 25(6), 1332–1342. https://doi.org/10.1109/tro.2009.2028761
  • Fan, X., Sun, M., Lin, Z., Song, J., He, Q., Sun, L., & Xie, H. (2018). Automated Noncontact Micromanipulation Using Magnetic Swimming Microrobots. IEEE Transactions on Nanotechnology, 17(4), 666–669. https://doi.org/10.1109/tnano.2018.2797325
  • Steager, E. B., Selman Sakar, M., Magee, C., Kennedy, M., Cowley, A., & Kumar, V. (2013). Automated biomanipulation of single cells using magnetic microrobots. The International Journal of Robotics Research, 32(3), 346–359. https://doi.org/10.1177/0278364912472381
  • Koens, L., Wang, W., Sitti, M., & Lauga, E. (2019). The near and far of a pair of magnetic capillary disks. Soft Matter, 15(7), 1497–1507. https://doi.org/10.1039/c8sm02215a
  • Li, X., & Fukuda, T. (2020). Magnetically Guided Micromanipulation of Magnetic Microrobots for Accurate Creation of Artistic Patterns in Liquid Environment. Micromachines, 11(7), 697. https://doi.org/10.3390/mi11070697
  • Ye, Z., & Sitti, M. (2014). Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. Lab Chip, 14(13), 2177–2182. https://doi.org/10.1039/c4lc00004h
  • Higdon, J. J. L., & Muldowney, G. P. (1995). Resistance functions for spherical particles, droplets and bubbles in cylindrical tubes. Journal of Fluid Mechanics, 298, 193–210. https://doi.org/10.1017/s0022112095003272
  • Mastrangeli, M., Valsamis, J.-B., Van Hoof, C., Celis, J.-P., & Lambert, P. (2010). Lateral capillary forces of cylindrical fluid menisci: a comprehensive quasi-static study. Journal of Micromechanics and Microengineering, 20(7), 075041. https://doi.org/10.1088/0960-1317/20/7/075041
  • Wang, S., & Ardekani, A. M. (2012). Unsteady swimming of small organisms. Journal of Fluid Mechanics, 702, 286–297. https://doi.org/10.1017/jfm.2012.177
  • Dong, F., Huang, Z., Qiu, D., Hao, L., Wu, W., & Jin, Z. (2019). Design and Analysis of a Small-Scale Linear Propulsion System for Maglev Applications (1)—The Overall Design Process. IEEE Transactions on Applied Superconductivity, 29(2), 1–5. https://doi.org/10.1109/tasc.2019.2895337
  • Munson, B. R., Young, D. F., & Okiishi, T. H. (2005). Fundamentals of Fluid Mechanics (5th ed.). Wiley.
  • Cipparrone, G., Hernandez, R. J., Pagliusi, P., & Provenzano, C. (2011). Magnus force effect in optical manipulation. Physical Review A, 84(1), 015802. https://doi.org/10.1103/physreva.84.015802
  • Berg, H. C. (1993). Random Walks in Biology: New and Expanded Edition (Revised ed.). Princeton University Press.
  • Mahoney, A. W., Nelson, N. D., Peyer, K. E., Nelson, B. J., & Abbott, J. J. (2014). Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems. Applied Physics Letters, 104(14), 144101. https://doi.org/10.1063/1.4870768
  • Ergin, F. G., Tabak, A. F., Wang, W., & Sitti, M. (2017, June). Time-resolved measurements of the free surface motion due to spinning micro-rafts using Stereo MicroPIV. Www.Dantecdynamics.Com. https://www.dantecdynamics.com/wp-content/uploads/2019/11/time-resolved_measurements_of_the_free_surface_motion_due_to_spinning_micro-rafts_using_stereo_micropiv-1.pdf
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Jiyan Sürer 0000-0003-3388-7843

Ahmet Fatih Tabak 0000-0003-3311-6942

Publication Date April 15, 2021
Published in Issue Year 2021

Cite

APA Sürer, J., & Tabak, A. F. (2021). Bernoulli-Equation-Based Robotic Model for Non-Contact Magnetic Micromanipulation. Avrupa Bilim Ve Teknoloji Dergisi(24), 47-52. https://doi.org/10.31590/ejosat.899657

Cited By