Research Article
BibTex RIS Cite

A Technical Analysis on the Use of Industrial Waste Fibers in the Production of Non-Autoclaved Aerated Concrete Masonry Block Elements

Year 2021, , 202 - 212, 15.04.2021
https://doi.org/10.31590/ejosat.900083

Abstract

The presence of non-autoclaved aerated concrete masonry block elements in recent years is among the product derivatives that have become increasingly important and widespread in the development of lightweight construction materials. It can be seen that it is increasingly preferred especially in non-load bearing building units due to its low unit weights, porous structure and ease of application and technical advantages such as insulation properties. Non-autoclaved aerated concrete masonry block elements can be made with the use of many different materials, especially the use of fiber additives of different lengths and origins as matrix reinforcement materials gains a special importance in terms of recovery of industrial wastes.
In this paper, preliminary findings of an ongoing experimental research and development study on the reinforcement effect in matrix structure of 3 different fiber types that can be considered in the industrial waste fiber category are technically discussed. This research study focuses on the production of non- autoclaved pre-cured, expanded masonry block elements using fiber additives. Two of these fiber types are fiber materials obtained from the recycling of denim fabric by opening denim fiber. In this study, these fibers are coded as Fiber 1 and Fiber 2. The fiber type, coded as fiber 1, has a cotton/synthetic ratio of 90/10. Its maximum fiber length is 3 mm. In the fiber type coded as fiber 2, it has a ratio of 70/30 cotton/ synthetic. In addition, the maximum fiber length of this fiber material is 2 mm. The fiber, coded as Fiber 3, is a medium-sized, 100% natural, highly pure cellulose white fiber with an average fiber length of
~200µm, obtained from recycling industrial paper waste. 

In this study, the effects of different fiber usage rates and fiber suitability are examined on non-autoclaved aerated concrete masonry mortar samples prepared with industrial different fiber wastes. Based on the findings, the effects of the types and amounts of materials used in the mixtures on the technical properties of non-autoclaved aerated concrete block element samples are analyzed in detail. The physical and mechanical properties of the new generation building element samples such as unit weight, compressive strength, water absorption by mass, porosity and thermal comfort properties are discussed in this paper with industrial approaches. 

Project Number

9

References

  • Babu, D.S. (2008). Mechanical and deformational properties, and shrinkage cracking behavior of lightweight concretes. PhD thesis. national university of Singapore.
  • Bakhshi, M., Mobasher, B. (2011). Experimental observations of early-age drying of Portland cement paste under low-pressure conditions. Cement and Concrete Composites, 33(4), 474–484. doi:http://dx.doi.org/10.1016/j.cemconcomp.2011.01.009
  • Bonakdar, A., Babbitt, F., Mobasher, B. (2013). Physical and mechanical characterization of Fiber-Reinforced Aerated Concrete (FRAC), Cement & Concrete Composites, 38, 82–91. doi:http://dx.doi.org/10.1016/j.cemconcomp.2013.03.006
  • Chen, Y-L., Chang, J-E., Lai, Y-C. and Chou, M-I. M. (2017). A comprehensive study on the production of autoclaved aerated concrete: Effects of silica-lime-cement composition and autoclaving conditions. Construction and Building Materials, 153, 622-629. doi:http://dx.doi.org/10.1016/j.conbuildmat.2017.07.116
  • El Zareef, M.A. (2010). Conceptual and structural design of buildings made of lightweight and infra lightweight concrete. PhD thesis. Deutschen natıonal bıblıothek.
  • Mobasher, B., Li, C.Y. (1996). Mechanical properties of hybrid cement-based composites. Materials Journal, 93(3), 284–292.
  • Perez-Pena, M., Mobasher, B. (1994). Mechanical properties of fiber reinforced lightweight concrete composites. Cement and Concrete Research, 24(6), 1121–1132. doi:http://dx.doi.org/10.1016/0008-8846(94)90036-1
  • Rasheed, M.A., Prakash, S.S. (2017). Behavior of Hybrid-Synthetic Fiber Reinforced Cellular Lightweight Concrete under Uni-axial Tension - Experimental and Analytical 20 Studies. Construction and Building Materials, 162, 857-870. doi:http://dx.doi.org/10.1016/j.conbuildmat.2017.12.095
  • Rasheed, M.A., Prakash, S.S. (2015). Mechanical Behavior Of Sustainable Hybrid-Synthetic Fiber Reinforced Cellular Light Weight Concrete For Structural Applications Of Masonry. Construction and Building Materials, 98, 631–640. doi:http://dx.doi.org/10.1016/j.conbuildmat.2015.08.137
  • Ronald, F., Carol, D.H. (1998). Engineering material properties of a fiber reinforced cellular concrete. Materials Journal, 95(5), 631–635.
  • Sanytsky M.A., (2010), Modified composite cements: A tutorial/ M.A. Sanytsky, H.S. Sobol, T.E. Markiv. – Lviv: Lviv Polytechnic Publishing House, 132 p.
  • Spratt, B.H. (1975). An introduction to lightweight concrete (5. bs.):Cement and Concrete Association.
  • Sukmana, N.C., Khifdillah, M.I., Nurkholil, A.S., Anggarini, U. (2019). Optimization Of Non-Autoclaved Aerated Concrete Using Phosphogypsum Of İndustrial Waste Based On The Taguchi Method. 13th Joint Conference on Chemistry (13th JCC) IOP Conf. Series: Materials Science and Engineering, 509, 012095. doi:https://doi.org/10.1088/1757-899X/509/1/012095
  • Tanacan L., Ersoy H., Arpacıpğlu U. (2009). Effect of high temperature and cooling conditions on aerated concrete proerties. Construction and Building Materials, 23(3), 1240-1248. doi:http://dx.doi.org/10.1016/j.conbuildmat.2008.08.007
  • Vijayalakshmi, R., Ramanagopal, S. (2020a). Compression behaviour of polypropylene fibre reinforced cellular light weight concrete masonry prism. Civil And Environmental Engineering Reports, 30(1), 145-160. doi:http://dx.doi.org/10.2478/ceer-2020-0011
  • Vijayalakshmi, R., Ramanagopal, S. (2020b). Experimental investigation into banana fibre reinforced lightweight concrete masonry prism sandwiched with GFRP sheet. Civil and Environmental Engineering Reports, 30(2), 15-31. doi:http://dx.doi.org/10.2478/ceer-2020-0017

Otoklavsız Gazbeton Kâgir Blok Elemanlarının Üretiminde Endüstriyel Atık Liflerin Kullanımı Üzerine Teknik Bir Analiz

Year 2021, , 202 - 212, 15.04.2021
https://doi.org/10.31590/ejosat.900083

Abstract

Taşıyıcı özellikte olmayan hafif yapı malzemelerinin gelişimde son yıllarda giderek önem kazanan ve yaygınlaştığı görülen ürün türevleri arasında otoklavsız gazbeton kâgir blok elemanlarının varlığı dikkat çekmektedir. Gerek birim ağırlıklarının düşük oluşu, gözenekli yapısı, uygulama kolaylığı ve gerekse yalıtım özellikleri gibi teknik avantajları sebebiyle özellikle taşıyıcı olmayan yapı birimlerinde giderek tercih edildiği de görülebilmektedir. Otoklavsız gazbeton kâgir blok elemanları birçok farklı malzeme kullanımları ile yapılabilmekte olup, özellikle bileşiminde farklı uzunluk ve orijinlerde lif katkı malzemelerinin matris donatı materyali olarak kullanımı endüstriyel atıkların geri kazanımı açısından ayrı bir önem kazanmaktadır.
Bu bildiride, endüstriyel atık lif kategorisinde değerlendirilebilen 3 farklı lif türünün matris yapıdaki donatı etkisi üzerine sürdürülmekte olan deneysel bir ArGe çalışmasının ön bulguları teknik olarak tartışılmaktadır. Bu araştırma çalışması lif katkılarının kullanıldığı otoklavsız ön kürlemeli, genleştirilerek elde edilen kâgir blok elemanlarının üretimine yöneliktir. Bu lif türlerinden ikisi, kot kumaşının geri dönüşümünde kot elyaf açma işleminden geçirilerek elde edilmiş lif malzemeleridir. Bu çalışmada Lif 1 ve Lif 2 olarak kodlanmıştır. Lif 1 olarak kodlanmış elyaf türü, 90/10 pamuk/sentetik oranına sahiptir. Maksimum lif boyutu 3 mm’dir. Lif 2 olarak kodlanmış elyaf türünde ise 70/30 pamuk/sentetik oranına sahiptir. Ayrıca bu lif malzemenin maksimum lif boyutu ise 2 mm’dir. Lif 3 olarak kodlanmış lif, endüstriyel kâğıt atıklarının geri dönüşümünden elde edilmiş ve ortalama lif uzunluğu ~200µm olan orta büyüklükte, % 100 doğal, yüksek oranda saf selüloz beyaz renkli bir elyaftır.
Bu çalışmada, özellikle endüstriyel lif atıklarının farklı kullanım oranlarında hazırlanan harç örneklerinde, lif kullanımın etkileri ve lif uygunluğu incelenmektedir. Elde edilen bulgulara dayanılarak, karışımlarda kullanılan malzeme tür ve miktarlarının otoklavsız gazbeton blok elemanı örneklerinin teknik özelliklerine olan etkileri detaylı analiz edilmektedir. Yeni nesil yapı elemanı örneklerinin birim ağırlık, basınç dayanımı, kütlece su emme, gözeneklilik ve ısısal konfor özellikleri gibi fiziksel ve mekanik özellikleri bu bildiride endüstriyel yaklaşımlarıyla tartışılmaktadır.

Supporting Institution

İzmir Kâtip Çelebi Üniversitesi

Project Number

9

Thanks

Bu çalışmanın her aşamasında laboratuvar imkânlarından yararlanma fırsatı sunan İzmir Kâtip Çelebi Üniversitesi – İnşaat Mühendisliği Bölümüne şükranlarımı sunarım.

References

  • Babu, D.S. (2008). Mechanical and deformational properties, and shrinkage cracking behavior of lightweight concretes. PhD thesis. national university of Singapore.
  • Bakhshi, M., Mobasher, B. (2011). Experimental observations of early-age drying of Portland cement paste under low-pressure conditions. Cement and Concrete Composites, 33(4), 474–484. doi:http://dx.doi.org/10.1016/j.cemconcomp.2011.01.009
  • Bonakdar, A., Babbitt, F., Mobasher, B. (2013). Physical and mechanical characterization of Fiber-Reinforced Aerated Concrete (FRAC), Cement & Concrete Composites, 38, 82–91. doi:http://dx.doi.org/10.1016/j.cemconcomp.2013.03.006
  • Chen, Y-L., Chang, J-E., Lai, Y-C. and Chou, M-I. M. (2017). A comprehensive study on the production of autoclaved aerated concrete: Effects of silica-lime-cement composition and autoclaving conditions. Construction and Building Materials, 153, 622-629. doi:http://dx.doi.org/10.1016/j.conbuildmat.2017.07.116
  • El Zareef, M.A. (2010). Conceptual and structural design of buildings made of lightweight and infra lightweight concrete. PhD thesis. Deutschen natıonal bıblıothek.
  • Mobasher, B., Li, C.Y. (1996). Mechanical properties of hybrid cement-based composites. Materials Journal, 93(3), 284–292.
  • Perez-Pena, M., Mobasher, B. (1994). Mechanical properties of fiber reinforced lightweight concrete composites. Cement and Concrete Research, 24(6), 1121–1132. doi:http://dx.doi.org/10.1016/0008-8846(94)90036-1
  • Rasheed, M.A., Prakash, S.S. (2017). Behavior of Hybrid-Synthetic Fiber Reinforced Cellular Lightweight Concrete under Uni-axial Tension - Experimental and Analytical 20 Studies. Construction and Building Materials, 162, 857-870. doi:http://dx.doi.org/10.1016/j.conbuildmat.2017.12.095
  • Rasheed, M.A., Prakash, S.S. (2015). Mechanical Behavior Of Sustainable Hybrid-Synthetic Fiber Reinforced Cellular Light Weight Concrete For Structural Applications Of Masonry. Construction and Building Materials, 98, 631–640. doi:http://dx.doi.org/10.1016/j.conbuildmat.2015.08.137
  • Ronald, F., Carol, D.H. (1998). Engineering material properties of a fiber reinforced cellular concrete. Materials Journal, 95(5), 631–635.
  • Sanytsky M.A., (2010), Modified composite cements: A tutorial/ M.A. Sanytsky, H.S. Sobol, T.E. Markiv. – Lviv: Lviv Polytechnic Publishing House, 132 p.
  • Spratt, B.H. (1975). An introduction to lightweight concrete (5. bs.):Cement and Concrete Association.
  • Sukmana, N.C., Khifdillah, M.I., Nurkholil, A.S., Anggarini, U. (2019). Optimization Of Non-Autoclaved Aerated Concrete Using Phosphogypsum Of İndustrial Waste Based On The Taguchi Method. 13th Joint Conference on Chemistry (13th JCC) IOP Conf. Series: Materials Science and Engineering, 509, 012095. doi:https://doi.org/10.1088/1757-899X/509/1/012095
  • Tanacan L., Ersoy H., Arpacıpğlu U. (2009). Effect of high temperature and cooling conditions on aerated concrete proerties. Construction and Building Materials, 23(3), 1240-1248. doi:http://dx.doi.org/10.1016/j.conbuildmat.2008.08.007
  • Vijayalakshmi, R., Ramanagopal, S. (2020a). Compression behaviour of polypropylene fibre reinforced cellular light weight concrete masonry prism. Civil And Environmental Engineering Reports, 30(1), 145-160. doi:http://dx.doi.org/10.2478/ceer-2020-0011
  • Vijayalakshmi, R., Ramanagopal, S. (2020b). Experimental investigation into banana fibre reinforced lightweight concrete masonry prism sandwiched with GFRP sheet. Civil and Environmental Engineering Reports, 30(2), 15-31. doi:http://dx.doi.org/10.2478/ceer-2020-0017
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Şeyma Pınar Özcan 0000-0002-1395-196X

Lütfullah Gündüz 0000-0003-2487-467X

Project Number 9
Publication Date April 15, 2021
Published in Issue Year 2021

Cite

APA Özcan, Ş. P., & Gündüz, L. (2021). Otoklavsız Gazbeton Kâgir Blok Elemanlarının Üretiminde Endüstriyel Atık Liflerin Kullanımı Üzerine Teknik Bir Analiz. Avrupa Bilim Ve Teknoloji Dergisi(24), 202-212. https://doi.org/10.31590/ejosat.900083