Fraksiyonel Dereceli Kaotik Lorenz Sistemi’nin Devre Sentezi
Year 2021,
, 42 - 46, 15.04.2021
İbrahim Ethem Saçu
,
Nimet Korkmaz
Abstract
Bu çalışmada fraksiyonel dereceli Lorenz Sistemi’nin devre sentezinde; fraksiyonel dereceli diferansiyel denklemlerin integrasyon işlemini gerçeklemek için standart kapasitörler kullanmak yerine R-C taklit devrelerinin kullanılmış ve bu devrelerin tasarım aşamaları üzerinde durulmuştur. Fraksiyonel dereceli sistemin R-C taklit devreleri ile tasarımı için, Matsuda yaklaşıklık metodu ile üçüncü dereceden transfer fonksiyonu elde edilmiştir. Elde edilen bu fonksiyon FOSTER-I R-C ağına dönüştürülerek, kaotik Lorenz Sistemi’nin devre çözümünde kullanılmıştır. Fraksiyonel dereceli Lorenz Sistemi’nin devre çözümü için tasarlanan sistemin doğrulaması SPICE devre simülasyonu ile yapılmıştır.
References
- May, R. M., Isham, V., Bolker, B., Renshaw, E., Lawrance, A. J., Spencer, N. M., ... & Cheng, B. (1992). Discussion on the meeting on chaos. 0035-9246, 54(2), 451-474.
- Pamuk, N. (2013). Dinamik sistemlerde kaotik zaman dizilerinin tespiti. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1), 78-92.
- Sacu, I. E., & Alci, M. (2018). Low-power OTA-C based tuneable fractional order filters. Electronic Components and Materials, 48(3), 135-144.
- Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2), 130-141.
- Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier.
- Krishna, B. T. (2011). Studies on fractional order differentiators and integrators: A survey. Signal Processing, 91(3), 386-426.
- Matsuda, K., & Fujii, H. (1993). H (infinity) optimized wave-absorbing control-Analytical and experimental results. Journal of Guidance, Control, and Dynamics, 16(6), 1146-1153.
- Elwy, O., Rashad, S. H., Said, L. A., & Radwan, A. G. (2018). Comparison between three approximation methods on oscillator circuits. Microelectronics Journal, 81, 162-178.
- Kiliç, R., & Korkmaz, N. (2016). Experimenting chaos with chaotic training boards. Chaotic Modeling and Simulation (CMSIM), 1, 71-84.
- Cuomo, K. M., & Oppenheim, A. V. (1993). Circuit implementation of synchronized chaos with applications to communications. Physical review letters, 71(1), 65.
- Tavazoei, M. S., & Haeri, M. (2007). A necessary condition for double scroll attractor existence in fractional-order systems. Physics Letters A, 367(1-2), 102-113.
- Tavazoei, M. S., & Haeri, M. (2009). A note on the stability of fractional order systems. Mathematics and Computers in simulation, 79(5), 1566-1576.
The Circuit Synthesis of the Fractional-Order Chaotic Lorenz System
Year 2021,
, 42 - 46, 15.04.2021
İbrahim Ethem Saçu
,
Nimet Korkmaz
Abstract
In this study, the R-C emulator circuits have been used instead of using standard capacitors in the circuit synthesis of the fractional-order Lorenz System and the design stages of these circuits have been emphasized. A third order transfer function has been obtained by Matsuda approximation method in order to get design of the fractional-order system with R-C emulator circuits. This obtained function has been transformed into FOSTER-I R-C network and this network structure has been used in the circuit solution of the chaotic Lorenz System. The verification of the system, which is designed for the circuit solution of the fractional-order Lorenz System, has been made by SPICE circuit simulation.
References
- May, R. M., Isham, V., Bolker, B., Renshaw, E., Lawrance, A. J., Spencer, N. M., ... & Cheng, B. (1992). Discussion on the meeting on chaos. 0035-9246, 54(2), 451-474.
- Pamuk, N. (2013). Dinamik sistemlerde kaotik zaman dizilerinin tespiti. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1), 78-92.
- Sacu, I. E., & Alci, M. (2018). Low-power OTA-C based tuneable fractional order filters. Electronic Components and Materials, 48(3), 135-144.
- Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2), 130-141.
- Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier.
- Krishna, B. T. (2011). Studies on fractional order differentiators and integrators: A survey. Signal Processing, 91(3), 386-426.
- Matsuda, K., & Fujii, H. (1993). H (infinity) optimized wave-absorbing control-Analytical and experimental results. Journal of Guidance, Control, and Dynamics, 16(6), 1146-1153.
- Elwy, O., Rashad, S. H., Said, L. A., & Radwan, A. G. (2018). Comparison between three approximation methods on oscillator circuits. Microelectronics Journal, 81, 162-178.
- Kiliç, R., & Korkmaz, N. (2016). Experimenting chaos with chaotic training boards. Chaotic Modeling and Simulation (CMSIM), 1, 71-84.
- Cuomo, K. M., & Oppenheim, A. V. (1993). Circuit implementation of synchronized chaos with applications to communications. Physical review letters, 71(1), 65.
- Tavazoei, M. S., & Haeri, M. (2007). A necessary condition for double scroll attractor existence in fractional-order systems. Physics Letters A, 367(1-2), 102-113.
- Tavazoei, M. S., & Haeri, M. (2009). A note on the stability of fractional order systems. Mathematics and Computers in simulation, 79(5), 1566-1576.