Sosyal ağların yoğun bir şekilde kullanımıyla birlikte, bir dizi sosyal nesnelerden ve nesnelere ait sosyal etkileşimlerden oluşan geniş ölçekli karmaşık ağ yapıları ortaya çıkmaktadır. Son zamanlarda, bu büyük ağ yapılarını analiz etmek için ağlardaki anlamlı grupları diğer bir deyişle toplulukları arama yaklaşımları önerilmektedir. Topluluk arama, sorgu nesneleri kullanarak, karmaşık ağ yapılarından sorgu nesneleri ile ilişkili, belli özellikler açısından birbirleri ile benzerlik gösteren ve birbirleri ile yoğun etkileşimde olan toplulukları ortaya çıkarma problemidir. Öznitelikli ağlar, düğümleri ağ nesnelerini, kenarları bu nesneler arasındaki ilişkileri temsil eden graf yapılarından ve ağdaki düğümleri karakterize eden içerik verisi diğer bir deyişle özniteliklerden oluşmaktadır. Geleneksel topluluk arama yaklaşımları, düğümlere ait öznitelik verisini göz ardı ederek, sadece ağ topolojisine odaklanmaktadır. Bu çalışmada, öznitelikli ağlarda topluluk arama problemi için öznitelik verisini ağ topolojisine entegre etme fikrine dayanan yeni bir yaklaşım öneriyoruz. Önerilen yöntem, her düğümün yalnızca kendi öznitelikleriyle bağlı olduğu yeni bir graf temsili oluşturarak, ağ topolojisine içeriksel bir boyut eklemektedir. Bu çalışmada, mevcut topluluk arama algoritmalarını öznitelikli ağlar üzerinde uygulanabilir hale getirmek, bu algoritmaların başarısını artırmak ve öznitelik verisini sorgu verisi olarak kullanılabilir hale getirmek amaçlanmaktadır. Gerçek dünya veri setleri üzerinden elde edilen deneysel sonuçlar, önerilen yöntemin temel yöntemler ile karşılaştırıldığında daha yüksek doğruluk değerleri elde ettiğini göstermektedir.
With the intense use of social networks and information networks, large-scale complex networks are emerging, consisting of a number of social objects (such as individuals or organizations) and social interactions of these social actors. Recently, many community search methods have been proposed to analyze these network structures and interactions between network objects. Given one or more query objects, community search is the problem of discovering a subset of objects, called as community, that are related to query objects which are similar to each other in terms of certain properties and intensely interact with each other. A network is characterized by a graph structure whose nodes represent the network objects and the edges refer to the relations between these objects. An attributed network contains contextual information that defines the interests of network objects as well as the graph structure. However, traditional community search approaches focus on the network topology, ignoring the attribute data. In this paper, we propose a new approach for the community search problem in attribute networks, based on the idea of integrating the attribute data into the network topology. The proposed method adds a contextual dimension to the network topology by creating a bipartite graph structure where each node is connected only by its attributes. In this study, we aim to make existing community search algorithms applicable on attribute networks, to increase the accuracy of these algorithms and to make the attribute data usable as query data. Experimental results on real world datasets show that the proposed method achieves higher accuracy than baseline methods.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | July 31, 2021 |
Published in Issue | Year 2021 |