Conference Paper
BibTex RIS Cite

Dental Kişi Tanıma Amacıyla Panoramik Röntgen Görüntülerinde Yeni Bir Çene Bölütleme Yöntemi

Year 2021, , 78 - 84, 31.07.2021
https://doi.org/10.31590/ejosat.948468

Abstract

Dental biyometri, kişilerin kimliklerinin tespiti için dental bilgilerinin kullanıldığı biyometri türüdür. İris, parmak izi, yürüyüş gibi diğer biyometrik özellikler günümüzde kişilerin tanınması amacıyla başarılı bir şekilde kullanılmaktadır. Ancak bu özellikler çeşitli nedenlerle kolayce zarar görebilirler. Örneğin yangın, deprem ve trafik kazası gibi kişinin ağır yaralandığı durumlarda, bu biyometrik özellikler zarar görebilir ve kullanılamaz hale gelebilir. Dişler ise diğer biyometrik özelliklere göre daha dayanıklıdır. Daha zor bozulurlar. Dişlerin bu özelliği sayesinde dental biyometri, diğer biyometrik özelliklerin kullanılabilir olmadığı durumlarda tercih edilmektedir. Dental görüntülemede bitewing, periapikal ve panoramik röntgen gibi farklı yöntemler bulunmaktadır. Bitewing tipi röntgen görüntülerinde çenenin bir bölümünde alt ve üst dişler görüntülenmektedir. Periapikal röntgenler bir ya birkaç dişin detaylı görüntülendiği röntgenlerdir. Panoramik röntgen görüntüleri ise tüm çenenin panoramik bir şekilde görüntülendiği röntgen türüdür. Bu röntgen tipinde tüm dişler bir arada görüntülenmektedir. Panoramik röntgenler çene ve diş yapıları konusunda daha fazla bilgi içermesi yönüyle daha avantajlıdır. Ancak buna karşın panoramik röntgen görüntülerinde, çene ve burun kemiği, ısırma diski gibi istenmeyen öğeler bulunmaktadır. Bu durum görüntülerin işlenmesini zorlaştırmaktadır. Üç röntgen türünün işlenmesinde ortak olarak düşük parlaklık değişimi, üst üste gelen ya da farklı yönelimlerde olan dişler gibi zorluklar bulunmaktadır. Dental radyografi görüntülerinden kişi tanıma uygulamasının ana aşamaları; alt ve üst çene ayrımı, diş ayrımı, özellik çıkarımı ve eşleştirmedir. Bu aşamalardan ilki alt-üst çene segmentasyonudur. Bu aşamanın yüksek doğrulukla yapılması, sonraki aşamaları da etkilemektedir. Bu nedenle çene ayırma işleminin en az hata ile tamamlanması önemlidir. Bu çalışmada panoramik röntgen görüntülerinde, alt ve üst çene segmentasyonu için yeni bir yöntem önerilmiştir. Önerilen yöntem ile kullanılan veri tabanında yüksek doğruluk ile çene ayırma işlemi gerçekleştirilmiştir. Kıyaslanan güncel diğer çalışmalara göre daha yüksek doğruluk oranı elde edilmiştir.

References

  • Pretty, I. A., & Sweet, D. (2001). A look at forensic dentistry–Part 1: The role of teeth in the determination of human identity. British dental journal, 190(7), 359-366.
  • Silva, G., Oliveira, L., & Pithon, M. (2018). Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives. Expert Systems with Applications, 107, 15-31.
  • Barboza, E. B., Marana, A. N., & Oliveira, D. T. (2012, March). Semiautomatic dental recognition using a graph-based segmentation algorithm and teeth shapes features. In 2012 5th IAPR International Conference on Biometrics (ICB) (pp. 348-353). IEEE.
  • Nomir, O. (2012). Human Identification: A new x-Ray Dental Radiographs Segmentation Algorithm using Graphcut. International Journal of Computers and Applications, 34(2), 81-89.
  • Jain, A. K., Chen, H., & Minut, S. (2003, June). Dental biometrics: human identification using dental radiographs. In International Conference on Audio-and Video-Based Biometric Person Authentication (pp. 429-437). Springer, Berlin, Heidelberg.
  • Abdel-Mottaleb, M., Nomir, O., Nassar, D. E., Fahmy, G., & Ammar, H. H. (2003, December). Challenges of developing an automated dental identification system. In 2003 46th Midwest Symposium on Circuits and Systems (Vol. 1, pp. 411-414). IEEE.
  • Jain, A. K., & Chen, H. (2004). Matching of dental X-ray images for human identification. Pattern recognition, 37(7), 1519-1532.
  • Chen, H., & Jain, A. K. (2004, August). Tooth contour extraction for matching dental radiographs. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. (Vol. 3, pp. 522-525). IEEE.
  • Bozkurt, M. H., & Karagol, S. (2020). Jaw and teeth segmentation on the panoramic X-ray images for dental human identification. Journal of Digital Imaging, 33(6), 1410-1427.
  • Said, E. H., Nassar, D. E. M., Fahmy, G., & Ammar, H. H. (2006). Teeth segmentation in digitized dental X-ray films using mathematical morphology. IEEE transactions on information forensics and security, 1(2), 178-189.
  • Ølberg, J. V., & Goodwin, M. (2016). Automated dental identification with lowest cost path-based teeth and jaw separation. Scandinavian Journal of Forensic Science, 22(2), 44-56.
  • Frejlichowski, D., & Wanat, R. (2011, August). Extraction of teeth shapes from orthopantomograms for forensic human identification. In International Conference on Computer Analysis of Images and Patterns (pp. 65-72). Springer, Berlin, Heidelberg.
  • Dibeh, G., Hilal, A., & Charara, J. (2018, November). A novel approach for dental panoramic radiograph segmentation. In 2018 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET) (pp. 1-6). IEEE.
  • Oktay, A. B. (2017). Human identification with dental panoramic radiographic images. IET Biometrics, 7(4), 349-355.

A New Jaw Segmentation Method on Panoramic X-Ray Images for Dental Human Identification

Year 2021, , 78 - 84, 31.07.2021
https://doi.org/10.31590/ejosat.948468

Abstract

Dental biometry is a biometry method in which dental information is used to identify individuals. Other biometric features such as iris, fingerprints, and gait are successfully used today to identify people. However, these features can be easily damaged for various reasons. For example, these biometric properties can be damaged and become unusable in cases of heavy damage such as fire, earthquake and traffic accident. Teeth are more durable than other biometric features. They deteriorate more difficultly. Thanks to this feature of teeth, dental biometry is preferred when other biometric features are not available. There are different methods in dental imaging such as bitewing, periapical and panoramic x-ray. Bitewing type x-ray images shows the upper and lower teeth in a part of the jaw. Periapical X-rays are X-rays that show one or more teeth in detail. Periapical x-rays are images that are shown one or more teeth in detail. Panoramic x-ray images, on the other hand, are a type of x-ray in which the entire jaw is viewed in a panoramic way. In this type of x-ray, all teeth are displayed together. Panoramic x-rays are more advantageous in that they contain more information about jaw and tooth structures. However, panoramic x-ray images contain undesirable items such as jawbone, nasal bone and bite disc. This situation makes it difficult to process images. Common difficulties in processing the three X-ray types are low brightness variation, overlapping teeth or teeth with different orientations. Main stages of person recognition application from dental radiography images are lower and upper jaw separation, tooth separation, feature extraction and matching. The first of these stages is the lower upper jaw segmentation. Failure to do this stage with high accuracy affects the next stages as well. For this reason, it is important to complete the jaw separation process with the least error. In this study, a new method is proposed for upper and lower jaw segmentation in panoramic x-ray images. With the proposed method, jaw separation was performed with high accuracy in the database used. In addition, higher accuracy rate was achieved compared to other compared current studies.

References

  • Pretty, I. A., & Sweet, D. (2001). A look at forensic dentistry–Part 1: The role of teeth in the determination of human identity. British dental journal, 190(7), 359-366.
  • Silva, G., Oliveira, L., & Pithon, M. (2018). Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives. Expert Systems with Applications, 107, 15-31.
  • Barboza, E. B., Marana, A. N., & Oliveira, D. T. (2012, March). Semiautomatic dental recognition using a graph-based segmentation algorithm and teeth shapes features. In 2012 5th IAPR International Conference on Biometrics (ICB) (pp. 348-353). IEEE.
  • Nomir, O. (2012). Human Identification: A new x-Ray Dental Radiographs Segmentation Algorithm using Graphcut. International Journal of Computers and Applications, 34(2), 81-89.
  • Jain, A. K., Chen, H., & Minut, S. (2003, June). Dental biometrics: human identification using dental radiographs. In International Conference on Audio-and Video-Based Biometric Person Authentication (pp. 429-437). Springer, Berlin, Heidelberg.
  • Abdel-Mottaleb, M., Nomir, O., Nassar, D. E., Fahmy, G., & Ammar, H. H. (2003, December). Challenges of developing an automated dental identification system. In 2003 46th Midwest Symposium on Circuits and Systems (Vol. 1, pp. 411-414). IEEE.
  • Jain, A. K., & Chen, H. (2004). Matching of dental X-ray images for human identification. Pattern recognition, 37(7), 1519-1532.
  • Chen, H., & Jain, A. K. (2004, August). Tooth contour extraction for matching dental radiographs. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. (Vol. 3, pp. 522-525). IEEE.
  • Bozkurt, M. H., & Karagol, S. (2020). Jaw and teeth segmentation on the panoramic X-ray images for dental human identification. Journal of Digital Imaging, 33(6), 1410-1427.
  • Said, E. H., Nassar, D. E. M., Fahmy, G., & Ammar, H. H. (2006). Teeth segmentation in digitized dental X-ray films using mathematical morphology. IEEE transactions on information forensics and security, 1(2), 178-189.
  • Ølberg, J. V., & Goodwin, M. (2016). Automated dental identification with lowest cost path-based teeth and jaw separation. Scandinavian Journal of Forensic Science, 22(2), 44-56.
  • Frejlichowski, D., & Wanat, R. (2011, August). Extraction of teeth shapes from orthopantomograms for forensic human identification. In International Conference on Computer Analysis of Images and Patterns (pp. 65-72). Springer, Berlin, Heidelberg.
  • Dibeh, G., Hilal, A., & Charara, J. (2018, November). A novel approach for dental panoramic radiograph segmentation. In 2018 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET) (pp. 1-6). IEEE.
  • Oktay, A. B. (2017). Human identification with dental panoramic radiographic images. IET Biometrics, 7(4), 349-355.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Hakan Bozkurt 0000-0002-7734-0295

Serap Karagöl 0000-0002-5750-1143

Publication Date July 31, 2021
Published in Issue Year 2021

Cite

APA Bozkurt, M. H., & Karagöl, S. (2021). Dental Kişi Tanıma Amacıyla Panoramik Röntgen Görüntülerinde Yeni Bir Çene Bölütleme Yöntemi. Avrupa Bilim Ve Teknoloji Dergisi(26), 78-84. https://doi.org/10.31590/ejosat.948468