Research Article
BibTex RIS Cite

İki Boyutlu Fotonik Kristallerde Elektromanyetik Dalga Yayılımı Frekanslarının Sonlu Farklar Yöntemiyle İncelenmesi

Year 2021, , 223 - 227, 31.07.2021
https://doi.org/10.31590/ejosat.952419

Abstract

Bu çalışmada, iki boyutlu fotonik kristal yapılarda elektromanyetik dalga yayılımı frekansları incelenmektedir. Bu amaçla, Maxwell denklemleri kullanılarak elde edilen elektromanyetik dalga yayılımı denklemi sonlu farklar yöntemi ile çözülmektedir. Elektromanyetik dalga yayılımı temel frekansları %3,10 gibi düşük bir hata oranıyla elde edilmiştir.

References

  • Alipour-Banaei, H., Serajmohammadi, S. & Mehdizadeh, F. (2017). All optical NAND gate based on nonlinear photonic crystal ring resonators. Optik, 130, 1214-1221. http://dx.doi.org/10.1016/j.ijleo.2016.11.190
  • Basmacı, A. N. & Filiz, S. (2021). Merkezi işlem biriminde elektromanyetik dalga yayılımı davranışı, Avrupa Bilim ve Teknoloji Dergisi, 24, 5-9. https://doi.org/10.31590/ejosat.898242
  • Basmaci, A. N. (2020). Characteristics of electromagnetic wave propagation in a segmented photonic waveguide, Journal of Optoelectronics and Advanced Materials, 22, 452-460.
  • Busch, K., Freymann, G., Linden, S., Mingaleev, S. F., Tkeshelashvili, L. & Wegener, M. (2007). Periodic nanostructures for photonics. Physics Reports, 444, 101-202. https://doi.org/10.1016/j.physrep.2007.02.011
  • Chapra, S. C. & Canale, R. P. (2015). Numerical methods for engineers (7th ed.). New York: McGraw-Hill Education.
  • Dideban, A., Habibiyan, H. & Ghafoorifard, H. (2017). Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Physica E, 87, 77-83. http://dx.doi.org/10.1016/j.physe.2016.11.022
  • Faruque, M. R. I., Rahman, M., Hasan, M. M., Tamim, A. M., İdrus, I. N. & İslam, M. T. (2020). Architecture of left-handed metamaterial absorber for absorbing electromagnetic hazards. Journal of Optoelectronics and Advanced Materials, 22, 495-500.
  • Fathallah, W., Sakli, H. & Aguili, T. (2014). Electromagnetic wave propagation in anisotropic metamaterial waveguides. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 28(4), 479-486. https://doi.org/10.1002/jnm.2029
  • Gu, J. & He, Z. (2020). Electromagnetic modeling for FSS with anisotropic substrate by using a hybrid-accelerated VSIE method. Engineering Analysis with Boundary Elements, 113, 110-117. https://doi.org/10.1016/j.enganabound.2019.12.011
  • Huang, Z., Zhou, J., Wang, L., Ma, R. & Xie, Q. (2021). Theoretical study on the electronic structures and electromagnetic wave absorption properties of Fe3Si/PPy composites. Materials Letters, 282, 128875. https://doi.org/10.1016/j.matlet.2020.128875
  • Inampudi, S., Nazari, M., Forouzmand, A. & Mosallaei, H. (2016). Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures. Journal of Applied Physics, 119, 025301. http://dx.doi.org/10.1016/1.4939616
  • Itin, Y. (2010). Dispersion relation for electromagnetic waves in anisotrop media. Physics Letters A, 374(9), 1113-1116. https://doi.org/10.1016/j.physleta.2009.12.071
  • Jia, S., La, D. & Ma, X. (2018). Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method. Computer Physics Communications, 225, 166-173. https://doi.org/10.1016/j.cpc.2017.12.009
  • Kumar, S., Kumar, P., Gupta, R. & Verma, V. (2021). Electromagnetic interference shielding behaviors of in-situ polyaniline nanocomposites and ferrite-polyaniline deposited fabrics in X-band frequency range. Journal of Alloys and Compounds, Basımda, 158331. https://doi.org/10.1016/j.jallcom.2020.158331
  • Liu, S. & Zhong, S. Y. (2013). Analysis on polarization characteristic of electromagnetic propagation in anisotropic magnetized plasma media. Optik, 14, 389-392. https://doi.org/10.1016/j.ijleo.2011.12.007
  • Mabhouti, K., Karamirad, M., Norouzzadeh, P., Golzan, M. M. & Naderali, R. (2021). Measurement of nickel doped zinc oxide NPs resonance frequencies and electromagnetic properties in X-band. Physica B: Physics of Condensed Matter, 602, 412532. https://doi.org/10.1016/j.physb.2020.412532
  • Martellosio, A., Pasian, M., Bozzi, M., Perregrini, L., Mazzanti, A., Svelto, F., Summers, P. E., Renne, G. & Bellomi, M. (2015). 0.5-50 GHz dielectric characterisation of breast cancer tissues. Electronics Letters, 51(13), 974-975.
  • Micheli, D., Delfini, A., Santoni, F., Volpini, F. & Marchetti, M. (2015). Measurement of electromagnetic field attenuation by building walls in the mobile phone and satellite navigation frequency bands. IEEE Antennas and Wireless Propagation Letters, 14, 698-702. https://doi.org/10.1109/LAWP.2014.2376811
  • Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85(18), 3966-3969.
  • Pozar, D. (2012). Microwave Engineering. Massachusetts: John Wiley & Sons.
  • Shalaev, V. M., Cai, W., Chettiar, U. K., Yuan, H.-K., Sarychev, A. K., Drachev, V. D. & Kildishev, A. V. (2005). Negative index of refraction in optical metamaterials. Optics Letters, 30(24), 3356-3358. https://doi.org/10.1364/OL.30.003356
  • Slyusar, V. I. (2009). Metamaterials on antenna solutions. International Conference on Antenna Theory and Techniques, (ss. 19-24.). Lyiv, Ukraine.
  • Soltani, A., Ouerghi, F., Abdelmalek, F., Haxha, S., Ademgil, H. & Akowuah, E. K. (2017). Unidirectional light propagation photonic crystal waveguide incorporating modified defects. Optik, 130, 1370-1376. https://doi.org/10.1016/j.ijleo.2016.11.179
  • Sreekanthe, K. V., Zeng, S., Shang, J., Yong, K.-T. & Yu, T. (2012). Excitation of surface electromagnetic waves in a graphene-based Bragg grating. Scientific Reports, 2(1), 00737. https://doi.org/10.1038/srep00737
  • Takayama, O., Dmitriev, P., Shkondin, E., Yermakov, O., Panah, M., Golenitskii, K., Jensen, F., Bogdanov, A. & Lavrinenko, A. (2018). Experimental observation of Dyakonov plasmons in the mid-infrared. Semiconductors, 52(4), 698-702.
  • Watts, M. C., Liu, X. & Padilla, W. J. (2012). Metamaterial electromagnetic wave absorbers. Advanced Optical Materials, 24, OP98-OP120. https://doi.org/10.1002/adma.201200674
  • Xia, T., Yu, H., Chen, Z., Huang, L., Liu, X. & Hu, M. (2017). Design and analysis of a field-modulated tubular linear permanent magnet generator for direct-drive wave energy conversion. IEEE Transactions on Magnetics, 53(6), 8103904. https://doi.org/10.1109/TMAG.2017.2662080
  • Yamashita, O. (2011). Spin and orbital angular momenta defined for electromagnetic fields in planar anisotropic media. Optics Communications, 284, 2532-2537. https://doi.org/10.1016/j.optcom.2011.01.049

Investigation of Electromagnetic Wave Propagation Frequencies in Two-Dimensional Photonic Crystals with Finite Differences Method

Year 2021, , 223 - 227, 31.07.2021
https://doi.org/10.31590/ejosat.952419

Abstract

In this study, frequencies of electromagnetic wave propagation in two-dimensional photonic crystal structures are investigated. For this purpose, the electromagnetic wave propagation equation obtained by using Maxwell equations is solved with the finite differences method. The fundamental frequencies of electromagnetic wave propagation have been obtained with a low error rate of 3.10%.

References

  • Alipour-Banaei, H., Serajmohammadi, S. & Mehdizadeh, F. (2017). All optical NAND gate based on nonlinear photonic crystal ring resonators. Optik, 130, 1214-1221. http://dx.doi.org/10.1016/j.ijleo.2016.11.190
  • Basmacı, A. N. & Filiz, S. (2021). Merkezi işlem biriminde elektromanyetik dalga yayılımı davranışı, Avrupa Bilim ve Teknoloji Dergisi, 24, 5-9. https://doi.org/10.31590/ejosat.898242
  • Basmaci, A. N. (2020). Characteristics of electromagnetic wave propagation in a segmented photonic waveguide, Journal of Optoelectronics and Advanced Materials, 22, 452-460.
  • Busch, K., Freymann, G., Linden, S., Mingaleev, S. F., Tkeshelashvili, L. & Wegener, M. (2007). Periodic nanostructures for photonics. Physics Reports, 444, 101-202. https://doi.org/10.1016/j.physrep.2007.02.011
  • Chapra, S. C. & Canale, R. P. (2015). Numerical methods for engineers (7th ed.). New York: McGraw-Hill Education.
  • Dideban, A., Habibiyan, H. & Ghafoorifard, H. (2017). Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Physica E, 87, 77-83. http://dx.doi.org/10.1016/j.physe.2016.11.022
  • Faruque, M. R. I., Rahman, M., Hasan, M. M., Tamim, A. M., İdrus, I. N. & İslam, M. T. (2020). Architecture of left-handed metamaterial absorber for absorbing electromagnetic hazards. Journal of Optoelectronics and Advanced Materials, 22, 495-500.
  • Fathallah, W., Sakli, H. & Aguili, T. (2014). Electromagnetic wave propagation in anisotropic metamaterial waveguides. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 28(4), 479-486. https://doi.org/10.1002/jnm.2029
  • Gu, J. & He, Z. (2020). Electromagnetic modeling for FSS with anisotropic substrate by using a hybrid-accelerated VSIE method. Engineering Analysis with Boundary Elements, 113, 110-117. https://doi.org/10.1016/j.enganabound.2019.12.011
  • Huang, Z., Zhou, J., Wang, L., Ma, R. & Xie, Q. (2021). Theoretical study on the electronic structures and electromagnetic wave absorption properties of Fe3Si/PPy composites. Materials Letters, 282, 128875. https://doi.org/10.1016/j.matlet.2020.128875
  • Inampudi, S., Nazari, M., Forouzmand, A. & Mosallaei, H. (2016). Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures. Journal of Applied Physics, 119, 025301. http://dx.doi.org/10.1016/1.4939616
  • Itin, Y. (2010). Dispersion relation for electromagnetic waves in anisotrop media. Physics Letters A, 374(9), 1113-1116. https://doi.org/10.1016/j.physleta.2009.12.071
  • Jia, S., La, D. & Ma, X. (2018). Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method. Computer Physics Communications, 225, 166-173. https://doi.org/10.1016/j.cpc.2017.12.009
  • Kumar, S., Kumar, P., Gupta, R. & Verma, V. (2021). Electromagnetic interference shielding behaviors of in-situ polyaniline nanocomposites and ferrite-polyaniline deposited fabrics in X-band frequency range. Journal of Alloys and Compounds, Basımda, 158331. https://doi.org/10.1016/j.jallcom.2020.158331
  • Liu, S. & Zhong, S. Y. (2013). Analysis on polarization characteristic of electromagnetic propagation in anisotropic magnetized plasma media. Optik, 14, 389-392. https://doi.org/10.1016/j.ijleo.2011.12.007
  • Mabhouti, K., Karamirad, M., Norouzzadeh, P., Golzan, M. M. & Naderali, R. (2021). Measurement of nickel doped zinc oxide NPs resonance frequencies and electromagnetic properties in X-band. Physica B: Physics of Condensed Matter, 602, 412532. https://doi.org/10.1016/j.physb.2020.412532
  • Martellosio, A., Pasian, M., Bozzi, M., Perregrini, L., Mazzanti, A., Svelto, F., Summers, P. E., Renne, G. & Bellomi, M. (2015). 0.5-50 GHz dielectric characterisation of breast cancer tissues. Electronics Letters, 51(13), 974-975.
  • Micheli, D., Delfini, A., Santoni, F., Volpini, F. & Marchetti, M. (2015). Measurement of electromagnetic field attenuation by building walls in the mobile phone and satellite navigation frequency bands. IEEE Antennas and Wireless Propagation Letters, 14, 698-702. https://doi.org/10.1109/LAWP.2014.2376811
  • Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85(18), 3966-3969.
  • Pozar, D. (2012). Microwave Engineering. Massachusetts: John Wiley & Sons.
  • Shalaev, V. M., Cai, W., Chettiar, U. K., Yuan, H.-K., Sarychev, A. K., Drachev, V. D. & Kildishev, A. V. (2005). Negative index of refraction in optical metamaterials. Optics Letters, 30(24), 3356-3358. https://doi.org/10.1364/OL.30.003356
  • Slyusar, V. I. (2009). Metamaterials on antenna solutions. International Conference on Antenna Theory and Techniques, (ss. 19-24.). Lyiv, Ukraine.
  • Soltani, A., Ouerghi, F., Abdelmalek, F., Haxha, S., Ademgil, H. & Akowuah, E. K. (2017). Unidirectional light propagation photonic crystal waveguide incorporating modified defects. Optik, 130, 1370-1376. https://doi.org/10.1016/j.ijleo.2016.11.179
  • Sreekanthe, K. V., Zeng, S., Shang, J., Yong, K.-T. & Yu, T. (2012). Excitation of surface electromagnetic waves in a graphene-based Bragg grating. Scientific Reports, 2(1), 00737. https://doi.org/10.1038/srep00737
  • Takayama, O., Dmitriev, P., Shkondin, E., Yermakov, O., Panah, M., Golenitskii, K., Jensen, F., Bogdanov, A. & Lavrinenko, A. (2018). Experimental observation of Dyakonov plasmons in the mid-infrared. Semiconductors, 52(4), 698-702.
  • Watts, M. C., Liu, X. & Padilla, W. J. (2012). Metamaterial electromagnetic wave absorbers. Advanced Optical Materials, 24, OP98-OP120. https://doi.org/10.1002/adma.201200674
  • Xia, T., Yu, H., Chen, Z., Huang, L., Liu, X. & Hu, M. (2017). Design and analysis of a field-modulated tubular linear permanent magnet generator for direct-drive wave energy conversion. IEEE Transactions on Magnetics, 53(6), 8103904. https://doi.org/10.1109/TMAG.2017.2662080
  • Yamashita, O. (2011). Spin and orbital angular momenta defined for electromagnetic fields in planar anisotropic media. Optics Communications, 284, 2532-2537. https://doi.org/10.1016/j.optcom.2011.01.049
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ayşe Nihan Basmacı 0000-0003-3737-3751

Seçkin Filiz 0000-0002-9383-8915

Publication Date July 31, 2021
Published in Issue Year 2021

Cite

APA Basmacı, A. N., & Filiz, S. (2021). Investigation of Electromagnetic Wave Propagation Frequencies in Two-Dimensional Photonic Crystals with Finite Differences Method. Avrupa Bilim Ve Teknoloji Dergisi(26), 223-227. https://doi.org/10.31590/ejosat.952419

Cited By

Electromagnetic Wave Propagation in Photonic Nanoplates
International Journal of Computational and Experimental Science and Engineering
https://doi.org/10.22399/ijcesen.581