Conference Paper
BibTex RIS Cite

Test Experiment Design for IMU-Based Angle Measurement Systems

Year 2021, , 180 - 184, 31.07.2021
https://doi.org/10.31590/ejosat.955145

Abstract

Inertial Measurement Unit (IMU) sensors are used in many applications that include aviation, vehicle systems, unmanned aircraft, indoor navigation, health, and robotic systems. An IMU consists of accelerometers and gyroscope sensors combined in a single module. However, the accelerometer or gyroscope alone cannot produce reliable data, and so the outputs are combined to determine accurate data for measurements such as direction, velocity, angular velocity and position.
The data collected from IMU sensors may differ due to measurement errors, calibration issues, and errors due to ambient noise. Small errors in IMU sensors can cause large deviations in applications. There is no clear distinction between the performance and area of use of commercially available sensors. Therefore, when selecting a sensor, the requirements for performance should be determined for the area of use and choosen accordingly.
This study investigates the performance of three IMU sensors that have no specific application area and are in common use. An experimental setup was designed and implemented to test the accuracy of the acceleration and gyroscopic information obtained from the IMU sensors. The test apparatus consists of IMU sensor, encoder, stepper motor and Raspberry Pi. The stepper motor and encoder are connected to a shaft, and the IMU sensor is mounted on a rotating moving mechanism. The apparatus is controlled by a Raspberry Pi. The Python programming language has been used for the control software. The apparatus provides rotation of a desired angle and velocity. Acceleration and gyroscopic data received from the IMU sensor are drawn in real time. All sensors were first calibrated and then data were taken. The performance of the sensors was compared using the angular values around the x-axis. The test setup was rotated at a certain angle in the x-axis using a stepper motor. The gyroscopic data on the x-axis for each IMU sensor were then read and processed through a Kalman filter. The accuracy of the IMU sensors was determined with reference to the encoder data.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Abhayasinghe, N., & Murray, I. (2014). Human gait phase recognition based on thigh movement computed using IMUs. Paper presented at the 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP).
  • Autonics. (2021). Retrieved from https://www.autonicsonline.com/product/product&product_id=10531
  • Aydin, H., & Erkmen, B. (2019). KAPALI ALAN YAYA KONUMLANDIRMA SİSTEMİ. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 337-344.
  • Bakhshi, S., Mahoor, M. H., & Davidson, B. S. (2011). Development of a body joint angle measurement system using IMU sensors. Paper presented at the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
  • Celik, Y., & Güneş, M. (2018). Designing an Object Tracker Self-Balancing Robot. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, 6(2), 124-133.
  • Chang, H.-T. T., Cheng, L.-W. A., & Chang, J.-Y. J. (2016). Development of IMU-based angle measurement system for finger rehabilitation. Paper presented at the 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP).
  • Gui, P., Tang, L., & Mukhopadhyay, S. (2015). MEMS based IMU for tilting measurement: Comparison of complementary and kalman filter based data fusion. Paper presented at the 2015 IEEE 10th conference on Industrial Electronics and Applications (ICIEA).
  • Jefiza, A., Pramunanto, E., Boedinoegroho, H., & Purnomo, M. H. (2017). Fall detection based on accelerometer and gyroscope using back propagation. Paper presented at the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI).
  • Loianno, G., Brunner, C., McGrath, G., & Kumar, V. (2016). Estimation, control, and planning for aggressive flight with a small quadrotor with a single camera and IMU. IEEE Robotics and Automation Letters, 2(2), 404-411.
  • MotionKing. (2014). Retrieved from https://datasheetspdf.com/pdf/928656/MotionKing/17HS3401/1
  • Sorotec. (2018). Retrieved from https://www.mcielectronics.cl/website_MCI/static/documents/TB6600_data_sheet.pdf
  • Yuan, Q., & Chen, I.-M. (2014). Localization and velocity tracking of human via 3 IMU sensors. Sensors and Actuators A: Physical, 212, 25-33.
  • Zhou, L., Fischer, E., Tunca, C., Brahms, C. M., Ersoy, C., Granacher, U., & Arnrich, B. (2020). How we found our IMU: Guidelines to IMU selection and a comparison of seven IMUs for pervasive healthcare applications. Sensors, 20(15), 4090.

IMU Tabanlı Açı Ölçüm Sistemleri için Test Deney Düzeneği Tasarımı

Year 2021, , 180 - 184, 31.07.2021
https://doi.org/10.31590/ejosat.955145

Abstract

Atalet Ölçüm Birimi (IMU) sensörleri, havacılık, araç sistemleri, insansız hava araçları, iç mekan navigasyon, sağlık ve robotik sistemleri içeren birçok uygulamada kullanılmaktadır. Bir IMU tek bir modülde birleştirilmiş ivmeölçerler ve jiroskop sensörlerinden oluşur. Ancak, ivmeölçer veya jiroskop tek başına güvenilir veriler üretemez ve bu nedenle çıkışlar yön, hız, açısal hız ve konum gibi ölçümler için doğru verileri belirlemek üzere birleştirilir.

IMU sensörlerinden toplanan veriler, ölçüm hataları, kalibrasyon sorunları ve ortam gürültüsünden kaynaklanan hatalar nedeniyle farklılık gösterebilir. IMU sensörlerindeki küçük hatalar, uygulamalarda büyük sapmalara neden olabilir. Piyasada bulunan sensörlerin performansı ve kullanım alanı arasında net bir ayrım yoktur. Bu nedenle sensör seçimi yapılırken kullanım alanı için performans gereksinimleri belirlenmeli ve buna göre seçilmelidir.
Bu çalışma, belirli bir uygulama alanı olmayan ve genel kullanımda olan üç IMU sensörünün performansını karşılaştırılmıştır. IMU sensörlerinden elde edilen ivme ve jiroskopik bilgilerin doğruluğunu test etmek için bir deney düzeneği tasarlanmış ve uygulanmıştır. Test aparatı IMU sensörü, enkoder, step motor ve Raspberry Pi'den oluşmaktadır. Step motor ve enkoder bir mile bağlanmış ve IMU sensörü dönen bir hareketli mekanizma üzerine monte edilmiştir. Deney düzeneği Raspberry Pi tarafından kontrol edilmektedir. Kontrol yazılımı için Python programlama dili kullanılmıştır. Deney düzeneği istenilen açıda ve hızda döndürülebilir. IMU sensöründen alınan ivme ve jiroskopik veriler gerçek zamanlı olarak grafik olarak çizdirilmketedir. Karşılaştırılan sensörler önce kalibre edilmiş ve ardından veriler alınmıştır. Sensörlerin performansı, x ekseni etrafındaki açısal değerler kullanılarak karşılaştırılmıştır. Test düzeneği, bir step motor kullanılarak x ekseninde belirli bir açıyla döndürülmüştür. Her IMU sensörü için x ekseni üzerindeki ivme ve jiroskopik veriler okunmuş ve Kalman filtresi aracılığıyla işlenmiştir. IMU sensörlerinin doğruluğu, enkoder verileri referans alınarak belirlenmiştir.

Project Number

-

References

  • Abhayasinghe, N., & Murray, I. (2014). Human gait phase recognition based on thigh movement computed using IMUs. Paper presented at the 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP).
  • Autonics. (2021). Retrieved from https://www.autonicsonline.com/product/product&product_id=10531
  • Aydin, H., & Erkmen, B. (2019). KAPALI ALAN YAYA KONUMLANDIRMA SİSTEMİ. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 337-344.
  • Bakhshi, S., Mahoor, M. H., & Davidson, B. S. (2011). Development of a body joint angle measurement system using IMU sensors. Paper presented at the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
  • Celik, Y., & Güneş, M. (2018). Designing an Object Tracker Self-Balancing Robot. Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, 6(2), 124-133.
  • Chang, H.-T. T., Cheng, L.-W. A., & Chang, J.-Y. J. (2016). Development of IMU-based angle measurement system for finger rehabilitation. Paper presented at the 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP).
  • Gui, P., Tang, L., & Mukhopadhyay, S. (2015). MEMS based IMU for tilting measurement: Comparison of complementary and kalman filter based data fusion. Paper presented at the 2015 IEEE 10th conference on Industrial Electronics and Applications (ICIEA).
  • Jefiza, A., Pramunanto, E., Boedinoegroho, H., & Purnomo, M. H. (2017). Fall detection based on accelerometer and gyroscope using back propagation. Paper presented at the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI).
  • Loianno, G., Brunner, C., McGrath, G., & Kumar, V. (2016). Estimation, control, and planning for aggressive flight with a small quadrotor with a single camera and IMU. IEEE Robotics and Automation Letters, 2(2), 404-411.
  • MotionKing. (2014). Retrieved from https://datasheetspdf.com/pdf/928656/MotionKing/17HS3401/1
  • Sorotec. (2018). Retrieved from https://www.mcielectronics.cl/website_MCI/static/documents/TB6600_data_sheet.pdf
  • Yuan, Q., & Chen, I.-M. (2014). Localization and velocity tracking of human via 3 IMU sensors. Sensors and Actuators A: Physical, 212, 25-33.
  • Zhou, L., Fischer, E., Tunca, C., Brahms, C. M., Ersoy, C., Granacher, U., & Arnrich, B. (2020). How we found our IMU: Guidelines to IMU selection and a comparison of seven IMUs for pervasive healthcare applications. Sensors, 20(15), 4090.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Cengiz Tepe 0000-0003-4065-5207

Levent Yavan 0000-0003-3331-7728

Project Number -
Publication Date July 31, 2021
Published in Issue Year 2021

Cite

APA Tepe, C., & Yavan, L. (2021). Test Experiment Design for IMU-Based Angle Measurement Systems. Avrupa Bilim Ve Teknoloji Dergisi(26), 180-184. https://doi.org/10.31590/ejosat.955145