Conference Paper
BibTex RIS Cite

Gri Kurt Optimizasyon Algoritması ile Kosinüs Modüleli Süzgeç Bankası Tasarımı

Year 2021, , 472 - 476, 31.07.2021
https://doi.org/10.31590/ejosat.960637

Abstract

Bu çalışmada alt bant kodlama, görüntü, video veya ses sıkıştırma, spektral tahmin, biyolojik sinyal işleme ve uyarlanabilir sinyal işleme gibi pek çok alanda kullanılan çok kanallı tek düze neredeyse mükemmel kosinüs modüleli süzgeç bankası (NPR CMFB) tasarlanmıştır. Bu amaç kapsamında prototip süzgeç sonlu darbe yanıtlı süzgeç (FIR) yapısında tasarlanmıştır ve süzgeç katsayıları hedeflenen süzgeç bankasının tüm kanallarının frekans özellikleri kullanılarak gri kurt optimizasyon algoritması ve bu çalışma ile önerilen objektif fonksiyon kullanarak optimize edilmiştir. Süzgeç bankasının tasarlanması aşamasında amaç fonksiyon Tepe yeniden oluşturma hatası (PRE) ve hedeflenen süzgeç bankası ile tasarlanan süzgeç bankası arasındaki mutlak hatanın toplamı göz önünde bulundurularak elde edilmiştir. Tasarlanan filtrenin performansı durdurma bandı kazancı ve PRE parametreleri ile ortaya konmuştur.

Supporting Institution

Erciyes Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FDK-2019-8760

References

  • Kutz, M. (2003). Standard handbook of biomedical engineering and design (p. 2). New York: McGraw-Hill.
  • Milic, L. (2009). Multirate filtering for digital signal processing: MATLAB aplications (First Edition). Information Sicence Reference
  • Mitra, S., M. (2006) Digital signal processing: a computer-based approach (Third Edition). McGraw Hill Higher Education.
  • Vaidyanathan, P. P. (1993). Multirate systems and filter banks. Pearson Education India.
  • Dolecek, G. J. (Ed.). (2017). Advances in Multirate Systems. Springer.
  • Chandra, S., Sharma, A., & Singh, G. K. (2019). Computationally Efficient Cosine Modulated Filter Bank Design for ECG Signal Compression. IRBM.
  • Sharma, I., Kumar, A., & Singh, G. K. (2016). Adjustable window based design of multiplier-less cosine modulated filter bank using swarm optimization algorithms. AEU-International Journal of Electronics and Communications, 70(1), 85-94.
  • Kumar, A., & Kuldeep, B. (2012). Design of M-channel cosine modulated filter bank using modified Exponential window. Journal of the Franklin Institute, 349(3), 1304-1315.
  • G. Özdemir And N. Karaboğa, "Uniform cosine modulated filter banks - a new cascade method based on window functions," Journal Of The Faculty Of Engineering And Architecture Of Gazi University , vol.35, pp.403-418, 2019
  • Sharma, M., San Tan, R., Acharya, U. R. A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank. Computers in biology and medicine. 2018.
  • Kumar, A., Singh, G. K., Anurag, S. An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal. Journal of King Saud University-Engineering Sciences, 27(2), 158-169, 2015.
  • Kalathil, S., & Elias, E. (2015). Efficient design of non-uniform cosine modulated filter banks for digital hearing aids. AEU-International Journal of Electronics and Communications, 69(9), 1314-1320
  • Sharma, M., Achuth, P. V., Deb, D., Puthankattil, S. D., Acharya, U. R. An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals. Cognitive Systems Research, 52, 508-520. 2018
  • Viholainen, A., Saramaki, T., Renfors, M. (1999, September). Nearly perfect-reconstruction cosine-modulated filter bank design for VDSL modems. In ICECS'99. Proceedings of ICECS'99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No. 99EX357) (Vol. 1, pp. 373-376). IEEE.
  • Latifoğlu, F., (2020). A novel singular spectrum analysis-based multi-objective approach for optimal FIR filter design using artificial bee colony algorithm. Neural Computıng & Applıcatıons , vol.32, no.17, 13323-13341. Das, P., Das, A. (2020, December). Adaptive Gabor Filtering using Grey Wolf Optimization for Enhancement of Brain MRI. In 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE) (pp. 356-359). IEEE.
  • Wang, J. S., Li, S. X. (2019). An improved grey wolf optimizer based on differential evolution and elimination mechanism. Scientific reports, 9(1), 1-21.
  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61.

Cosine Modulated Filter Bank Design with Gray Optimization Algorithm

Year 2021, , 472 - 476, 31.07.2021
https://doi.org/10.31590/ejosat.960637

Abstract

Bu çalışmada alt bant kodlama, görüntü, video veya ses sıkıştırma, spektral tahmin, biyolojik sinyal işleme ve uyarlanabilir sinyal işleme gibi pek çok alanda kullanılan çok kanallı tek düze neredeyse mükemmel kosinüs modüleli süzgeç bankası (NPR CMFB) tasarlanmıştır. Bu amaç kapsamında prototip süzgeç sonlu darbe yanıtlı süzgeç (FIR) yapısında tasarlanmıştır ve süzgeç katsayıları hedeflenen süzgeç bankasının tüm kanallarının frekans özellikleri kullanılarak gri kurt optimizasyon algoritması ve bu çalışma ile önerilen objektif fonksiyon kullanarak optimize edilmiştir. Süzgeç bankasının tasarlanması aşamasında amaç fonksiyon Tepe yeniden oluşturma hatası (PRE) ve hedeflenen süzgeç bankası ile tasarlanan süzgeç bankası arasındaki mutlak hatanın toplamı göz önünde bulundurularak elde edilmiştir. Tasarlanan filtrenin performansı durdurma bandı kazancı ve PRE parametreleri ile ortaya konmuştur.

Project Number

FDK-2019-8760

References

  • Kutz, M. (2003). Standard handbook of biomedical engineering and design (p. 2). New York: McGraw-Hill.
  • Milic, L. (2009). Multirate filtering for digital signal processing: MATLAB aplications (First Edition). Information Sicence Reference
  • Mitra, S., M. (2006) Digital signal processing: a computer-based approach (Third Edition). McGraw Hill Higher Education.
  • Vaidyanathan, P. P. (1993). Multirate systems and filter banks. Pearson Education India.
  • Dolecek, G. J. (Ed.). (2017). Advances in Multirate Systems. Springer.
  • Chandra, S., Sharma, A., & Singh, G. K. (2019). Computationally Efficient Cosine Modulated Filter Bank Design for ECG Signal Compression. IRBM.
  • Sharma, I., Kumar, A., & Singh, G. K. (2016). Adjustable window based design of multiplier-less cosine modulated filter bank using swarm optimization algorithms. AEU-International Journal of Electronics and Communications, 70(1), 85-94.
  • Kumar, A., & Kuldeep, B. (2012). Design of M-channel cosine modulated filter bank using modified Exponential window. Journal of the Franklin Institute, 349(3), 1304-1315.
  • G. Özdemir And N. Karaboğa, "Uniform cosine modulated filter banks - a new cascade method based on window functions," Journal Of The Faculty Of Engineering And Architecture Of Gazi University , vol.35, pp.403-418, 2019
  • Sharma, M., San Tan, R., Acharya, U. R. A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank. Computers in biology and medicine. 2018.
  • Kumar, A., Singh, G. K., Anurag, S. An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal. Journal of King Saud University-Engineering Sciences, 27(2), 158-169, 2015.
  • Kalathil, S., & Elias, E. (2015). Efficient design of non-uniform cosine modulated filter banks for digital hearing aids. AEU-International Journal of Electronics and Communications, 69(9), 1314-1320
  • Sharma, M., Achuth, P. V., Deb, D., Puthankattil, S. D., Acharya, U. R. An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals. Cognitive Systems Research, 52, 508-520. 2018
  • Viholainen, A., Saramaki, T., Renfors, M. (1999, September). Nearly perfect-reconstruction cosine-modulated filter bank design for VDSL modems. In ICECS'99. Proceedings of ICECS'99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No. 99EX357) (Vol. 1, pp. 373-376). IEEE.
  • Latifoğlu, F., (2020). A novel singular spectrum analysis-based multi-objective approach for optimal FIR filter design using artificial bee colony algorithm. Neural Computıng & Applıcatıons , vol.32, no.17, 13323-13341. Das, P., Das, A. (2020, December). Adaptive Gabor Filtering using Grey Wolf Optimization for Enhancement of Brain MRI. In 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE) (pp. 356-359). IEEE.
  • Wang, J. S., Li, S. X. (2019). An improved grey wolf optimizer based on differential evolution and elimination mechanism. Scientific reports, 9(1), 1-21.
  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sümeyya Arıkan 0000-0001-7582-7537

Fatma Latifoğlu 0000-0003-2018-9616

Project Number FDK-2019-8760
Publication Date July 31, 2021
Published in Issue Year 2021

Cite

APA Arıkan, S., & Latifoğlu, F. (2021). Gri Kurt Optimizasyon Algoritması ile Kosinüs Modüleli Süzgeç Bankası Tasarımı. Avrupa Bilim Ve Teknoloji Dergisi(26), 472-476. https://doi.org/10.31590/ejosat.960637