Research Article
BibTex RIS Cite

Kompresör ve Türbin Palelerinin Fikstür Tasarımlarının Parametrik Analiz ve Sonlu Eleman Simülasyonları ile İncelenmesi

Year 2021, , 97 - 105, 30.11.2021
https://doi.org/10.31590/ejosat.989033

Abstract

Servis ömürleri boyunca aşınma, korozyon, yorulma ve sürünme gibi pek çok sayıda olumsuz koşula maruz kalan kompresör ve türbin paleleri, ayrık tasarlanırlar ve türbin disklerine özel kök geometrileri ile bağlanırlar. Kaba haldeki paleler genellikle döküm yoluyla üretilir ve yüksek hassasiyet gerektirdiklerinden çoğunlukla sürünme ilerlemeli taşlama ile işlenir. Söz konusu palelerin gerek işleme gerekse ölçüm aşamasında sabitlenmesi için sıkça uygulanan yöntemlerden biri, pimli mekanik fikstürler ile bağlamadır. Geometrik açıdan oldukça ince ve maliyet açısından oldukça pahalı olan paleleri sabitlemek için kullanılacak pimli fikstürlerin yanlış tasarlanması ve/veya uygulanması, bu hassas parçalara zarar verebilir ve hatta ıskartaya çıkmalarına sebep olabilir. Geçmişte yapılan ve literatürde yayınlanan çalışmalar kapsamında farklı pim yerleşim ve konfigürasyonlarının ve de uygulanan bağlama kuvvetlerinin ince ve hassas olan türbin palelerindeki etkileri gözlemlenmektedir. Bununla beraber aynı araştırmacılar tarafından aynı yaklaşımla yapılan ve söz konusu değişkenlerin sonuca tesirleri ve birbirleri ile etkileşimlerini sistematik olarak ele alan yayınlar açısından eksiklik bulunmaktadır. Yapılan bu çalışmada kompresör ve türbin palelerinin fikstür tasarımlarının sistematik analizleri gerçekleştirilmektedir. Bu kapsamda güncel uçak motorları ile uyumlu ölçülere sahip iki adet pale geometrisi oluşturulmuş ve bu paleleri sabitleyen pimlerin yerleşimleri ile bağlama kuvvetlerini dikkate alan, Taguchi yöntemi ile uyumlu deney tasarımları planlanmıştır. Deney tasarımında planlanan farklı senaryolar sonlu elemanlar yöntemi ile incelenmiş ve sonuçlar üzerinde çok değişkenli varyans analizleri (MANOVA) yapılmıştır. Yapılan farklı analizlerde ulaşılan ve birbirleri ile uyumlu olan sonuçlara göre, palelerin fikstüre sabitlenmesi sırasında uygulanan kuvvet, pale boyutu ve pale uç bölgesindeki pim yerleşiminin deformasyonlar açısından kayda değer etkisi olduğu görülmüştür.

Supporting Institution

TÜBİTAK

Project Number

1919B012003222

Thanks

Bu çalışma, TUBİTAK 2209-A - Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı altında ve Eskişehir Teknik Üniversitesi Bilimsel Araştırma Proje destekleri kapsamında 209 programı altında 21LTP026 proje numarası ve “Kompresör ve Türbin Palelerinin İşlenmesine Yönelik Fikstür Tasarım Metodolojisi Geliştirilmesi” adı ile desteklenen proje dahilinde yapılmıştır.

References

  • Saraçyakupoğlu, T. (2021). Bir Gaz Türbin Motoru Kompresör PalesininTi6Al4V Alaşımından Eklemeli Üretim Yöntemi ile İmalatı ve Boyutsal Doğrulaması. Mühendis ve Makina, 62(702), 151-179.
  • Poyraz, Ö., Yılmaz, O., & Yasa, E. (2014, June). Investigation of Free-Form Surface Reconstruction Techniques for Reverse Engineering of Worn-Out Gas Turbine Blades: A Case Study. In The 16th International Conference on Machine Design and Production (Vol. 30).
  • Mevissen, F., & Meo, M. (2019). A review of NDT/structural health monitoring techniques for hot gas components in gas turbines. Sensors, 19(3), 711.
  • Naumann, H. G. (1982). Steam turbine blade design options: how to specify or upgrade. In Proceedings of the 11th Turbomachinery Symposium. Texas A&M University. Turbomachinery Laboratories.
  • Poyraz, Ö., Ozaner, O.C., & Subaşı, L. (2019). Comparative review on the manufacturing of turbine blade fir-tree roots. In Proceedings of UTIS 10th International Congress on Machining.
  • Moneta, G., Jachimowicz, J., & Osiński, J. (2015). Influence of Manufacturing Tolerances on Vibration Frequencies of Turbine Blade. Machine Dynamics Research, 38(1).
  • Gameros, A., Lowth, S., Axinte, D., Nagy-Sochacki, A., Craig, O., & Siller, H. R. (2017). State-of-the-art in fixture systems for the manufacture and assembly of rigid components: A review. International Journal of Machine Tools and Manufacture, 123, 1-21.
  • Snigdha, M., Sandeep, S.C., Swathi, G., Suresh, R., & Hanuma, P. (2017). Design of Fixture for the Manufacturing of Compressor Rotor Blade in Aircraft Engine. International Journal of Mechanical Engineering and Technology (IJMET), Vol 8, pp. 1034–1051.
  • Wang, H., Huang, L., Yao, C., Kou, M., Wang, W., Huang, B., & Zheng, W. (2015). Integrated analysis method of thin-walled turbine blade precise machining. International Journal of Precision Engineering and Manufacturing, 16(5), 1011-1019.
  • Dwyer, J. P. (2001). U.S. Patent No. 6,186,867. Washington, DC: U.S. Patent and Trademark Office.
  • ASME. (2009). Dimensioning, & Tolerancing, Y14. 5-2009. NY: The American Society of Mechanical Engineers.
  • Flack, D. R., & Hannaford, J. (2006). Fundamental good practice in dimensional metrology.
  • Wu, D., Wang, H., Peng, J., Zhang, K., Yu, J., Zheng, X., & Chen, Y. (2020). Machining fixture for adaptive CNC machining process of near-net-shaped jet engine blade. Chinese Journal of Aeronautics, 33(4), 1311-1328.
  • Wang, Y., Hodgson, A., Chen, X., & Gindy, N. (2008). A methodology for the development of machining fixtures for components with complicated geometry. International Journal of Computer Integrated Manufacturing, 21(7), 848-856.
  • RadhaMadhavi, C., Ramu, B., & Srinivasulu, K. (2014). Design of machining fixture for turbine rotor blade. International Journal of Research in Engineering and Technology, 3(3), 1-14.
  • Vale, T. D. O., Villar, G. D. C., & Menezes, J. C. (2012). Methodology for structural integrity analysis of gas turbine blades. Journal of Aerospace Technology and Management, 4(1), 51-59.
  • Huang, Q., Yadav, S., Gao, S., Xu, Z., & Wang, X. (2018, October). Analysis of Adaptive Clamping Force of Fixture Based on Finite Element Method. In IOP Conference Series: Materials Science and Engineering (Vol. 423, No. 1, p. 012116). IOP Publishing.
  • Wang, H., Zhang, K., Wu, D., Yu, T., Yu, J., & Liao, Y. (2021). Analysis and optimization of the machining fixture system stiffness for near-net-shaped aero-engine blade. The International Journal of Advanced Manufacturing Technology, 113(11), 3509-3523.
  • Maloney, P., Moroz, N., Stanfill, C., & Zalenski, N. (2008). Turbine Blade Fixture for Inspection and Grinding. no. April.
  • Chavan, S.G., & Karidkar, S.S. (2012). Experimental Stress Analysis In A Fixture System Using, FEA. International Journal of Engineering Research & Technology (IJERT), Vol. 1 Issue 10.
  • Chen, W., Ni, L., & Xue, J. (2008). Deformation control through fixture layout design and clamping force optimization. The International Journal of Advanced Manufacturing Technology, 38(9-10), 860.
  • Qing, M. I. A. O., Wenfeng, D. I. N. G., KUANG, W., & Changyong, Y. A. N. G. (2019). Grinding force and surface quality in creep feed profile grinding of turbine blade root of nickel-based superalloy with microcrystalline alumina abrasive wheels. Chinese Journal of Aeronautics.
  • Raffles, M. H., Kolluru, K., Axinte, D., & Llewellyn-Powell, H. (2013). Assessment of adhesive fixture system under static and dynamic loading conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(2), 267-280.
  • Bhaduri, D., Soo, S. L., Aspinwall, D. K., Novovic, D., Harden, P., Bohr, S., & Martin, D. (2012). A study on ultrasonic assisted creep feed grinding of nickel based superalloys. Procedia CIRP, 1, 359-364.
  • Kumar., D. (2020). Turbofan Engine for Medium-Range Aircraft with take-off thrust 101.46kN. Thesis, 10.13140/RG.2.2.35715.3280.

Investigations on the Fixture Designs of Compressor and Turbine Blades with Parametric Analysis and Finite Element Simulations

Year 2021, , 97 - 105, 30.11.2021
https://doi.org/10.31590/ejosat.989033

Abstract

Compressor and turbine blades are designed separately and connected to the turbine discs with special root geometries. The raw blades are often produced by casting and machined with creep feed grinding, since they require high precision. One of the most frequently applied methods for fixing these during the machining, is fastening these with mechanical pinned fixtures. Improper design or application of these fixtures during clamping of very thin and costly blades can damage these sensitive parts and even cause them to be scrapped. Within the scope of the previous studies, the effects of different pin layouts and configurations, as well as the applied clamping forces are observed. However, the influence of these variables on the results and their interactions with each other were not researched. In this study, systematical analyzes on the fixture designs of the compressor and turbine blades are carried out. In this context, two blade geometries with dimensions compatible with current aircraft engines were created, and design of experiments compatible with the Taguchi method were planned, considering the layout of the pins and the clamping forces. Different scenarios planned in the experimental design were examined with the finite element method, and multivariate analyzes of variance (MANOVA) were performed on the result. According to the results obtained in different analyzes and which are compatible with each other, it has been observed that the force applied during the fixing of the blades to the fixture, the blade size and the pin placement in the blade tip region have significant effects on deformations.

Project Number

1919B012003222

References

  • Saraçyakupoğlu, T. (2021). Bir Gaz Türbin Motoru Kompresör PalesininTi6Al4V Alaşımından Eklemeli Üretim Yöntemi ile İmalatı ve Boyutsal Doğrulaması. Mühendis ve Makina, 62(702), 151-179.
  • Poyraz, Ö., Yılmaz, O., & Yasa, E. (2014, June). Investigation of Free-Form Surface Reconstruction Techniques for Reverse Engineering of Worn-Out Gas Turbine Blades: A Case Study. In The 16th International Conference on Machine Design and Production (Vol. 30).
  • Mevissen, F., & Meo, M. (2019). A review of NDT/structural health monitoring techniques for hot gas components in gas turbines. Sensors, 19(3), 711.
  • Naumann, H. G. (1982). Steam turbine blade design options: how to specify or upgrade. In Proceedings of the 11th Turbomachinery Symposium. Texas A&M University. Turbomachinery Laboratories.
  • Poyraz, Ö., Ozaner, O.C., & Subaşı, L. (2019). Comparative review on the manufacturing of turbine blade fir-tree roots. In Proceedings of UTIS 10th International Congress on Machining.
  • Moneta, G., Jachimowicz, J., & Osiński, J. (2015). Influence of Manufacturing Tolerances on Vibration Frequencies of Turbine Blade. Machine Dynamics Research, 38(1).
  • Gameros, A., Lowth, S., Axinte, D., Nagy-Sochacki, A., Craig, O., & Siller, H. R. (2017). State-of-the-art in fixture systems for the manufacture and assembly of rigid components: A review. International Journal of Machine Tools and Manufacture, 123, 1-21.
  • Snigdha, M., Sandeep, S.C., Swathi, G., Suresh, R., & Hanuma, P. (2017). Design of Fixture for the Manufacturing of Compressor Rotor Blade in Aircraft Engine. International Journal of Mechanical Engineering and Technology (IJMET), Vol 8, pp. 1034–1051.
  • Wang, H., Huang, L., Yao, C., Kou, M., Wang, W., Huang, B., & Zheng, W. (2015). Integrated analysis method of thin-walled turbine blade precise machining. International Journal of Precision Engineering and Manufacturing, 16(5), 1011-1019.
  • Dwyer, J. P. (2001). U.S. Patent No. 6,186,867. Washington, DC: U.S. Patent and Trademark Office.
  • ASME. (2009). Dimensioning, & Tolerancing, Y14. 5-2009. NY: The American Society of Mechanical Engineers.
  • Flack, D. R., & Hannaford, J. (2006). Fundamental good practice in dimensional metrology.
  • Wu, D., Wang, H., Peng, J., Zhang, K., Yu, J., Zheng, X., & Chen, Y. (2020). Machining fixture for adaptive CNC machining process of near-net-shaped jet engine blade. Chinese Journal of Aeronautics, 33(4), 1311-1328.
  • Wang, Y., Hodgson, A., Chen, X., & Gindy, N. (2008). A methodology for the development of machining fixtures for components with complicated geometry. International Journal of Computer Integrated Manufacturing, 21(7), 848-856.
  • RadhaMadhavi, C., Ramu, B., & Srinivasulu, K. (2014). Design of machining fixture for turbine rotor blade. International Journal of Research in Engineering and Technology, 3(3), 1-14.
  • Vale, T. D. O., Villar, G. D. C., & Menezes, J. C. (2012). Methodology for structural integrity analysis of gas turbine blades. Journal of Aerospace Technology and Management, 4(1), 51-59.
  • Huang, Q., Yadav, S., Gao, S., Xu, Z., & Wang, X. (2018, October). Analysis of Adaptive Clamping Force of Fixture Based on Finite Element Method. In IOP Conference Series: Materials Science and Engineering (Vol. 423, No. 1, p. 012116). IOP Publishing.
  • Wang, H., Zhang, K., Wu, D., Yu, T., Yu, J., & Liao, Y. (2021). Analysis and optimization of the machining fixture system stiffness for near-net-shaped aero-engine blade. The International Journal of Advanced Manufacturing Technology, 113(11), 3509-3523.
  • Maloney, P., Moroz, N., Stanfill, C., & Zalenski, N. (2008). Turbine Blade Fixture for Inspection and Grinding. no. April.
  • Chavan, S.G., & Karidkar, S.S. (2012). Experimental Stress Analysis In A Fixture System Using, FEA. International Journal of Engineering Research & Technology (IJERT), Vol. 1 Issue 10.
  • Chen, W., Ni, L., & Xue, J. (2008). Deformation control through fixture layout design and clamping force optimization. The International Journal of Advanced Manufacturing Technology, 38(9-10), 860.
  • Qing, M. I. A. O., Wenfeng, D. I. N. G., KUANG, W., & Changyong, Y. A. N. G. (2019). Grinding force and surface quality in creep feed profile grinding of turbine blade root of nickel-based superalloy with microcrystalline alumina abrasive wheels. Chinese Journal of Aeronautics.
  • Raffles, M. H., Kolluru, K., Axinte, D., & Llewellyn-Powell, H. (2013). Assessment of adhesive fixture system under static and dynamic loading conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(2), 267-280.
  • Bhaduri, D., Soo, S. L., Aspinwall, D. K., Novovic, D., Harden, P., Bohr, S., & Martin, D. (2012). A study on ultrasonic assisted creep feed grinding of nickel based superalloys. Procedia CIRP, 1, 359-364.
  • Kumar., D. (2020). Turbofan Engine for Medium-Range Aircraft with take-off thrust 101.46kN. Thesis, 10.13140/RG.2.2.35715.3280.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Özgür Poyraz 0000-0001-9892-5738

Nurullah Yandı 0000-0002-0509-7513

Project Number 1919B012003222
Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Poyraz, Ö., & Yandı, N. (2021). Kompresör ve Türbin Palelerinin Fikstür Tasarımlarının Parametrik Analiz ve Sonlu Eleman Simülasyonları ile İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(28), 97-105. https://doi.org/10.31590/ejosat.989033