Research Article
BibTex RIS Cite

İnsansız Hava Araçlarının Seyrüsefer Uygulamaları İçin Sahada Programlanabilir Kapı Dizisinde Kalman Filtresi Gerçekleştirmesi

Year 2021, , 152 - 156, 30.11.2021
https://doi.org/10.31590/ejosat.992118

Abstract

Son yıllarda insansız hava aracı (İHA) uygulamaları, malzeme taşıma veya izleme görevleri amacıyla çeşitli imalat alanlarında yaygın olarak kullanılmaktadır. Bu durum İHA'ların yerinin doğru tahmin edilmesinin önemini arttırmıştır. Bu makale, İHA'ların konumlarının doğru bir şekilde konumlandırılması/tespit edilmesi için donanım tabanlı Kalman Filtresi uygulamasını sunmaktadır. İHA’ların yüksek performans ve kompakt form faktörünü korumak için, Alanda Programlanabilir Kapı Dizisi (FPGA) donanım kaynağı olarak kullanılmıştır. Bununla birlikte, Kalman Filtre algoritması çok sayıda matris hesaplamasına ihtiyaç duyar. Matris hesaplamalarının donanımda tipik uygulaması karmaşıktır ve geleneksel yazılım tabanlı yaklaşımlardan daha fazla çaba gerektirir. Kalman kazanç formülündeki matris ters çevirme hesaplaması, Kalman Filtre algoritmasındaki en zor matris hesaplamalarından biridir ve donanım uygulamasını basitleştirmek için bir matris ters çevirme yöntemi olarak Chebyshev tipi ters çevirme metodu kullanılmıştır. Önerilen yöntem, aynı senaryoya dayalı olarak hem Matlab hem de Vivado üzerinde simülasyonu yapılmıştır ve Kalman Filtresi ve Chebyshev algoritmasının sayısal sonuçları bu iki simülasyon platformu arasında karşılaştırılmıştır. Deneysel sonuçlara göre, önerilen çözüm, İHA'lara yönelik Kalman Filtre uygulaması için FPGA üzerinden kompakt ve yüksek performanslı bağımsız bir çözüm sunmaktadır.

References

  • Bai, L., Maechler, P., Muehlberghuber, M., & Kaeslin, H. (2012). High- speed compressed sensing reconstruction on FPGA using OMP and AMP. 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012). doi:10.1109/icecs.2012.6463559
  • Introduction to Kalman Filter and Its Applications website. (2021). Mathworks.https://www.mathworks.com/matlabcentral/fileexchange/68262-introduction-to-kalman-filter-and-its-applications
  • ISE WebPACK Design Software website. (2021). Xilinx. https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
  • Khosiawan, Y., & Nielsen, I. (2016). A system of UAV application in indoor environment. Production & Manufacturing Research, 4(1), 2-22. doi:10.1080/21693277.2016.1195304
  • Kim, Y., & Bang, H. (2019). Introduction to Kalman Filter and Its Applications. Introduction and Implementations of the Kalman Filter. doi:10.5772/intechopen.80600
  • Lu, J., Zhang, H., & Meng, H. (2010). Novel hardware architecture of sparse recovery based on FPGAs. 2010 2nd International Conference on Signal Processing Systems. doi:10.1109/icsps.2010.5555628
  • Mathworks website. (2021). https://www.mathworks.com/
  • Rawal, N. (2015). HDL implementation of Kalman Filter for GNSS receiver. 2015 IEEE International Advance Computing Conference (IACC). doi:10.1109/iadcc.2015.7154717
  • Rico-Aniles, H. D., Ramirez-Cortes, J. M., & Rangel-Magdaleno, J. D. (2014). FPGA-based matrix inversion using an iterative Chebyshev-type method in the context of compressed sensing. 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. doi:10.1109/i2mtc.2014.6860890
  • Soh, J., & Wu, X. (2017). An FPGA-Based Unscented Kalman Filter for System-On-Chip Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(4), 447-451. doi:10.1109/tcsii.2016.2565730
  • Stanislaus, J. L., & Mohsenin, T. (2013). Low-complexity FPGA implementation of compressive sensing reconstruction. 2013 International Conference on Computing, Networking and Communications (ICNC). doi:10.1109/iccnc.2013.6504167

Kalman Filter Implementation on Field-programmable Gate Array for Navigation Applications of Unmanned Aerial Vehicles

Year 2021, , 152 - 156, 30.11.2021
https://doi.org/10.31590/ejosat.992118

Abstract

In recent years, unmanned aerial vehicle (UAV) applications have been widely used in various manufacturing areas for the purpose of material handling or monitoring tasks. This situation increased the importance of proper estimation of UAVs’ location. This paper presents hardware based Kalman Filter implementation for UAVs to accurately locate/detect its positions. To maintain high performance and compact form factor, Field-programmable Gate Array (FPGA) has been used as a hardware source. However, Kalman Filter algorithm needs lots of matrix computation and the typical implementation of matrix computations in hardware is complex and requires more effort than traditional software-based approaches. Matrix inversion computation in the Kalman gain formula is one of the most difficult matrix calculations in Kalman Filter algorithm and Chebyshev type inversion is used as a matrix inversion method to simplify hardware implementation. The proposed method simulated on both Matlab and Vivado based on the same scenario and numerical results of Kalman Filter and Chebyshev algorithm compared between these two simulation platforms. According to experimental results, the proposed solution serves compact and high performance standalone solution via FPGA for Kalman Filter implementation for UAVs.

References

  • Bai, L., Maechler, P., Muehlberghuber, M., & Kaeslin, H. (2012). High- speed compressed sensing reconstruction on FPGA using OMP and AMP. 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012). doi:10.1109/icecs.2012.6463559
  • Introduction to Kalman Filter and Its Applications website. (2021). Mathworks.https://www.mathworks.com/matlabcentral/fileexchange/68262-introduction-to-kalman-filter-and-its-applications
  • ISE WebPACK Design Software website. (2021). Xilinx. https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
  • Khosiawan, Y., & Nielsen, I. (2016). A system of UAV application in indoor environment. Production & Manufacturing Research, 4(1), 2-22. doi:10.1080/21693277.2016.1195304
  • Kim, Y., & Bang, H. (2019). Introduction to Kalman Filter and Its Applications. Introduction and Implementations of the Kalman Filter. doi:10.5772/intechopen.80600
  • Lu, J., Zhang, H., & Meng, H. (2010). Novel hardware architecture of sparse recovery based on FPGAs. 2010 2nd International Conference on Signal Processing Systems. doi:10.1109/icsps.2010.5555628
  • Mathworks website. (2021). https://www.mathworks.com/
  • Rawal, N. (2015). HDL implementation of Kalman Filter for GNSS receiver. 2015 IEEE International Advance Computing Conference (IACC). doi:10.1109/iadcc.2015.7154717
  • Rico-Aniles, H. D., Ramirez-Cortes, J. M., & Rangel-Magdaleno, J. D. (2014). FPGA-based matrix inversion using an iterative Chebyshev-type method in the context of compressed sensing. 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. doi:10.1109/i2mtc.2014.6860890
  • Soh, J., & Wu, X. (2017). An FPGA-Based Unscented Kalman Filter for System-On-Chip Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(4), 447-451. doi:10.1109/tcsii.2016.2565730
  • Stanislaus, J. L., & Mohsenin, T. (2013). Low-complexity FPGA implementation of compressive sensing reconstruction. 2013 International Conference on Computing, Networking and Communications (ICNC). doi:10.1109/iccnc.2013.6504167
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Metin Mert Deniz 0000-0002-6370-4887

Ufuk Sakarya This is me 0000-0002-8365-3415

Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Deniz, M. M., & Sakarya, U. (2021). Kalman Filter Implementation on Field-programmable Gate Array for Navigation Applications of Unmanned Aerial Vehicles. Avrupa Bilim Ve Teknoloji Dergisi(28), 152-156. https://doi.org/10.31590/ejosat.992118