Research Article
BibTex RIS Cite

Karbon Nanotüp ve Nanokil Takviyesinin Epoksi Karbon Kumaş Kompozit Boruların Mekanik Özelliklerine Etkisinin İncelenmesi

Year 2021, , 198 - 206, 30.11.2021
https://doi.org/10.31590/ejosat.995135

Abstract

Genel olarak nano dolgular, fiber takviyeli polimer esaslı kompozitlerin mekanik ve darbe davranışlarını arttırır. Bununla birlikte, nano dolgu maddelerinin hibridizasyona etkileri ve bunların nano ölçekli hasar mekanizmaları üzerindeki nedenleri, kumaş takviyeli kompozitler için yeterince çalışılmamıştır. Bu çalışmada karbon nanotüpler, nanokil partikülleri takviyeli epoksi karbon kumaş kompozit boruların düşük hızlı darbe tepkileri ve mekanik özellikleri değerlendirilmiştir. Karbon kumaş kompozit borular, ağırlıkça %1 ve 3 karbon nanotüp ve ağırlıkça %1 ve 3 nanokil parçacıkları ve nano madde dolgusuz olarak, elle yatırma tekniği kullanılarak hazırlanmıştır. Karbon nanotüp (MWCNT), nanokil takviyeli epoksi karbon kumaş kompozit borular için düşük hız darbe etkileri ve mekanik özellikleri, nanodolgu partiküllerin içeriğinin bir fonksiyonu olarak elde edilmiştir. ASTM D7136 / D7136 M-12 standartlarına göre 5 J, 10 J ve 15 J enerji seviyeleri için kompozit borulara düşük hızlı darbe testleri uygulanmıştır. 5J, 10 J ve 15 J için Karbon Kumaş/Epoksi’ye ilave edilen karbon nanotüpler (MWCNT) ve nanokil nanodolgularının, maksimum kuvvet, emilen enerji ve en düşük yer değiştirme ve geri tepme enerjisi gösterdiği gözlendi. Karbon Kumaş/Epoksi’ye ,MWCNT ve nanokil gibi nanohibrit ilavesi ise nano dolgu maddesi ilavesi olmayandan, daha yüksek düşük hızlı darbe tepkileri oluşturdu. Nano dolgu maddeleri eklenmemiş Karbon Kumaş/Epoksi kompozit örnekleri, en düşük maksimum kuvvet, en yüksek yer değiştirmeleri ve geri tepme enerjisini gösterdi. Sonuçlar, Karbon Kumaş/Epoksi kompozit borular ile karbon nanotüp (MWCNT) ve nanokil parçacık- larının artmasıyla mekanik özelliklerin önemli ölçüde arttığını göstermektedir.

Supporting Institution

Necmettin Erbakan Üniversitesi Bilimsel Araştırmalar Koordinasyon Başkanlığı

Project Number

181431003

Thanks

Necmettin Erbakan Üniversitesi Bilimsel Araştırmalar Koordinasyon Başkanlığı

References

  • Henderson L.,2019. Carbon Fibers and Their Composite Materials.MDPI.
  • Al-Samman T.,2019. Material and Process Design for Lightweight Structures.MDPI.,
  • Marshall I. H.,1999. Composite Structures, 10th. International Conference.Elsevier.47.
  • Burchell T. D., ed.,1999. Carbon Materials for Advanced Technologies.Elsevier.
  • Fitzer E.,1998. Reinforcements and Carbon Carbon Composites.Springer.
  • Bunsell A. R.,2005. Fundamentals of Fibre Rein- forced Composite Materials.IOP.
  • Advani S. G.,1992. Computer Aided Design in Composite Material Technology III.Elsevier.
  • Campbell F. C. Jr.,2004. Manufacturing Process-es for Advanced Composites. Elsevier.
  • Burchell T. D., ed.,1999. Carbon Materials for Advanced Technologies.Elsevier.
  • Bai J.,2013. Advanced Fibre–Reinforced Polymer (FRP) Composites for structural applications. Elsevier.
  • Aliabadi M. H.,2015. Woven Composites. Impe- rial College Press.
  • Kompis V.,2008. Composites with Micro and Nano-Structure Computational Modeling and Experiments. Springer.
  • Suzuki S., ed.,2013. Syntheses and Applica- tions of Carbon Nanotubes and Their Composites . Intech.
  • Loos M.,2015. Carbon Nanotube Reinforced Composites. CNR Polymer Science and Technology. Elsevier.
  • Islam M.,2015. Characterization Carbon Fiber Reinforced Epoxy Composites Modified Nanoclay Carbon Nanotubes. Procedia Engineering. 105:821-828.
  • Vaka M.,2021. Carbon Nanotubes and Their Composites From Synthesis to Applications.Contem- porary Nanomaterials.
  • Yuan P., Bergaya F., eds.,2016. Nanosized Tubular Clay Minerals Halloysite- Imogolite.Elsevier.
  • Jawaid M.,2016. Nanoclay Reinforced Polymer Composites Natural Fibre Nanoclay Hybrid Composites. Springer.
  • Hashin Z., Herakovich C. T.,1983. Mechanics of Composite Materials. Recent Advances. Pergamon.
  • Hinton M. J.,2001. Failure Criteria in Fibre-Reinforced-Polymer Composites.Elsevier.
  • Voyiadjis G. Z.,1998. Damage Mechanics in Engineering Materials.Elsevier.
  • Talreja R.,2012. Damage and Failure of Com- posite Materials.Cambridge.
  • Talreja R.,2016. Modeling Damage, Fatigue and Failure of Composite Materials.Woodhead Publishing.
  • Jones N.,1993. Structural Crashworthiness and Failure.Elsevier.
  • Fink J. K.,2014. High Performance Polymers. 2nd. ed. Elsevier.
  • Daniel I. M.,1994. Engineering Mechanics of Composite Materials.Oxford.
  • Daniel I. M,2006. Engineering Mechanics of Composite Materials. 2nd. ed.Oxford.
  • Herakovich C. T.,1998. Mechanics of Fibrous Composites.Wiley.
  • Datoo M.,1991. Mechanics of Fibrous Compo- sites. Springer.
  • Vautrin A.,Sol H ,ed.,1991. Mechanical Identi-fication of Composites .Springer.
  • Mishnaevsky L. L.,2007. Computational Meso- mechanics of Composites Numerical Analysis Microstructures Strength Damage Resistance.Wiley.
  • Kara M.,2012. Failure Behavior of Filament Wound GRP Pipes Under Internal Pressure Repaired With Patch After Low Velocity Impact.Ph.D. Thesis. Selcuk University, Graduate School of Natural and Applied Sciences, Department of Mechanical Engineering.
  • Ji C.,2007. Impact Damage of 3D Orthogonal Woven Composite. Applied Composite Materials. Springer.14:343-362.
  • Shi Y. ,2017. Modelling low velocity impact induced damage in composite laminates.Mechanics of Advanced Materials and Modern Processes.3;14:1-12.
  • François D., eds.,2002. From Charpy To Present Impact Testing.Elsevier.
  • Baucom J.,2005. Low-velocity impact damage progression in woven E-glass composite systems. Composites Part A. Elseiver.36:658-664.
  • ASTM D7136 / D7136 M-12, 2012. Standard Test Method Measurement Damage Fiber-Reinforced Polymer Matrix Composites Drop Weight Impact. ASTM.
  • Abobo I. D.,2021. Effect of organoclay rein-forcement on the mechanical and thermal properties of unsaturated polyester resin composites. Epitoanyag –Journal of Silicate Based and Composite Materi- als.2;73:63-67.
  • Islam, F.,2019. Mechanical and Interfacial Char- acterization of Jute Fabrics Reinforced Unsaturated Polyester Resin Composites. Nano Hybrids and Composites.25:22-31.
  • Kiani M., Parvaneh V., et al.,2020. Fabrication and investigation of the mechanical properties of PVC/carbon fiber/graphene nano- composite pipes for oil and gas applications. Journal of Thermoplastic Composite Materials.1-16.
  • Jemii H., et al.,2017. Mechanical, thermal and physico-chemical behavior of virgin and hydro-thermally aged polymeric pipes. Journal of Thermo-plastic Composite Materials.1-21.

Effect of Mechanical Properties on Carbon Nanotubes, Nanoclays Reinforced Epoxy Carbon Fabric Composite Pipes

Year 2021, , 198 - 206, 30.11.2021
https://doi.org/10.31590/ejosat.995135

Abstract

Generally, the nanofillers increase the mechanical and impact behaviors of fiber reinforced polymer based composites. However, the effects of the hybridization of nanofillers and their reasons over the nano scale damage mechanisms have not been adequately studied for fabric reinforced composites. The low velocity impact responses and mechanical properties of carbon nanotubes, nanoclays particles reinforced epoxy carbon fabric composite pipes have been evaluated in this study. Carbon fabric composite pipes have been prepared with 1 ,and 3 wt % of carbon nanotube and 1,and 3 wt% of nanoclay particles and unfilled nanofillers, using hand lay-up technique. Mechanical properties of low velocity impact for carbon nanotubes (MWCNT), nanoclays particles reinforced epoxy carbon fabric composite pipes have been obtained as a function of content of nanofillers particles. The low-velocity impact tests applied on composite pipes for energy levels 5 J,10 J, and 15 J according to in accordance with ASTM D7136 / D7136 M-12 standards. It was observed that carbon nanotubes (MWCNT) and nanoclay nanofillers addition to Carbon Fabric/Epoxy for 5J, 10 J and 15 J showed maximum force, absorbed energy and the lowest displacements and rebound energy. MWCNTs and nanoclays nano-hybrid addition to Carbon Fabric/Epoxy improved higher low velocity impact responses than none nanofillers addition. The specimens of unfilled nanofillers Carbon Fabric/Epoxy composites showed the lowest maximum force , highest displacements and rebound energy. The results show that the mechanical properties are found to increase substantially with increasing carbon nanotube (MWCNT) and nanoclays particles with Carbon Fabric/Epoxy composite pipes.

Project Number

181431003

References

  • Henderson L.,2019. Carbon Fibers and Their Composite Materials.MDPI.
  • Al-Samman T.,2019. Material and Process Design for Lightweight Structures.MDPI.,
  • Marshall I. H.,1999. Composite Structures, 10th. International Conference.Elsevier.47.
  • Burchell T. D., ed.,1999. Carbon Materials for Advanced Technologies.Elsevier.
  • Fitzer E.,1998. Reinforcements and Carbon Carbon Composites.Springer.
  • Bunsell A. R.,2005. Fundamentals of Fibre Rein- forced Composite Materials.IOP.
  • Advani S. G.,1992. Computer Aided Design in Composite Material Technology III.Elsevier.
  • Campbell F. C. Jr.,2004. Manufacturing Process-es for Advanced Composites. Elsevier.
  • Burchell T. D., ed.,1999. Carbon Materials for Advanced Technologies.Elsevier.
  • Bai J.,2013. Advanced Fibre–Reinforced Polymer (FRP) Composites for structural applications. Elsevier.
  • Aliabadi M. H.,2015. Woven Composites. Impe- rial College Press.
  • Kompis V.,2008. Composites with Micro and Nano-Structure Computational Modeling and Experiments. Springer.
  • Suzuki S., ed.,2013. Syntheses and Applica- tions of Carbon Nanotubes and Their Composites . Intech.
  • Loos M.,2015. Carbon Nanotube Reinforced Composites. CNR Polymer Science and Technology. Elsevier.
  • Islam M.,2015. Characterization Carbon Fiber Reinforced Epoxy Composites Modified Nanoclay Carbon Nanotubes. Procedia Engineering. 105:821-828.
  • Vaka M.,2021. Carbon Nanotubes and Their Composites From Synthesis to Applications.Contem- porary Nanomaterials.
  • Yuan P., Bergaya F., eds.,2016. Nanosized Tubular Clay Minerals Halloysite- Imogolite.Elsevier.
  • Jawaid M.,2016. Nanoclay Reinforced Polymer Composites Natural Fibre Nanoclay Hybrid Composites. Springer.
  • Hashin Z., Herakovich C. T.,1983. Mechanics of Composite Materials. Recent Advances. Pergamon.
  • Hinton M. J.,2001. Failure Criteria in Fibre-Reinforced-Polymer Composites.Elsevier.
  • Voyiadjis G. Z.,1998. Damage Mechanics in Engineering Materials.Elsevier.
  • Talreja R.,2012. Damage and Failure of Com- posite Materials.Cambridge.
  • Talreja R.,2016. Modeling Damage, Fatigue and Failure of Composite Materials.Woodhead Publishing.
  • Jones N.,1993. Structural Crashworthiness and Failure.Elsevier.
  • Fink J. K.,2014. High Performance Polymers. 2nd. ed. Elsevier.
  • Daniel I. M.,1994. Engineering Mechanics of Composite Materials.Oxford.
  • Daniel I. M,2006. Engineering Mechanics of Composite Materials. 2nd. ed.Oxford.
  • Herakovich C. T.,1998. Mechanics of Fibrous Composites.Wiley.
  • Datoo M.,1991. Mechanics of Fibrous Compo- sites. Springer.
  • Vautrin A.,Sol H ,ed.,1991. Mechanical Identi-fication of Composites .Springer.
  • Mishnaevsky L. L.,2007. Computational Meso- mechanics of Composites Numerical Analysis Microstructures Strength Damage Resistance.Wiley.
  • Kara M.,2012. Failure Behavior of Filament Wound GRP Pipes Under Internal Pressure Repaired With Patch After Low Velocity Impact.Ph.D. Thesis. Selcuk University, Graduate School of Natural and Applied Sciences, Department of Mechanical Engineering.
  • Ji C.,2007. Impact Damage of 3D Orthogonal Woven Composite. Applied Composite Materials. Springer.14:343-362.
  • Shi Y. ,2017. Modelling low velocity impact induced damage in composite laminates.Mechanics of Advanced Materials and Modern Processes.3;14:1-12.
  • François D., eds.,2002. From Charpy To Present Impact Testing.Elsevier.
  • Baucom J.,2005. Low-velocity impact damage progression in woven E-glass composite systems. Composites Part A. Elseiver.36:658-664.
  • ASTM D7136 / D7136 M-12, 2012. Standard Test Method Measurement Damage Fiber-Reinforced Polymer Matrix Composites Drop Weight Impact. ASTM.
  • Abobo I. D.,2021. Effect of organoclay rein-forcement on the mechanical and thermal properties of unsaturated polyester resin composites. Epitoanyag –Journal of Silicate Based and Composite Materi- als.2;73:63-67.
  • Islam, F.,2019. Mechanical and Interfacial Char- acterization of Jute Fabrics Reinforced Unsaturated Polyester Resin Composites. Nano Hybrids and Composites.25:22-31.
  • Kiani M., Parvaneh V., et al.,2020. Fabrication and investigation of the mechanical properties of PVC/carbon fiber/graphene nano- composite pipes for oil and gas applications. Journal of Thermoplastic Composite Materials.1-16.
  • Jemii H., et al.,2017. Mechanical, thermal and physico-chemical behavior of virgin and hydro-thermally aged polymeric pipes. Journal of Thermo-plastic Composite Materials.1-21.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bülent Karaoğlu 0000-0002-7872-4071

Hüseyin Arıkan 0000-0003-1266-4982

Mehmet Kayrıcı 0000-0003-1178-5168

Project Number 181431003
Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Karaoğlu, B., Arıkan, H., & Kayrıcı, M. (2021). Effect of Mechanical Properties on Carbon Nanotubes, Nanoclays Reinforced Epoxy Carbon Fabric Composite Pipes. Avrupa Bilim Ve Teknoloji Dergisi(28), 198-206. https://doi.org/10.31590/ejosat.995135