Research Article
BibTex RIS Cite

Moleküler Baskılı Polimerler ile Modifiye Edilmiş Karbon Pasta Elektrotlarla Thiuramın Voltametrik Tayini

Year 2018, Issue: 14, 323 - 333, 31.12.2018
https://doi.org/10.31590/ejosat.476017

Abstract

Spesifik tanıma özelliği
bakımından molekül baskılama tekniği, üç boyutlu polimerik malzemelerin
hazırlanmasında önemli bir araç haline gelmiştir. Üç boyutlu olarak çapraz bağlanmış
polimerik malzemeler, kalıp molekülünün bulunduğu ortamdaki fonksiyonel
monomerlerin polimerizasyonu ile elde edilirler. Daha sonra, uygun sökme
prosedürüyle kalıp molekülünün şekil, boyut ve fonksiyonel gruplarına ait tamamlayıcı
tanıma bölgeleri oluşturulur. Böylelikle, molekül baskılı polimerler, kalıp
moleküle karşı seçici özellik göstermesinin yanı sıra kararlı bir yapıda
bulunması, sıcaklığa ve basınca karşı dayanıklı, kimyasallara karşı dirençli olmaları
ve tekrar kullanılabilmeleri gibi özelliklerinden dolayı sıklıkla
kullanılmaktadır. Günümüzde, moleküler baskılama tekniği, kromatografi, sensör
vb. gibi çeşitli analitik tekniklerle başarı bir şekilde birleştirilmiştir.



Bu çalışmada, thiuram baskılı
mikroküreler sentezlendi ve FT-IR spektroskopisi ve Taramalı Elektron
Mikroskobu (SEM) ile karakterize edildi. Thiuram molekülü baskılanmış
polimerlerle modifiye edilmiş olan karbon pasta elektrot (CPE), difrensiyel
puls voltametrisi (DPV) kullanılarak thiuram etken maddesi içeren pestisit
örneğinde thiuram tayini yapılmıştır.

References

  • Alizadeh, N., Kalhor, H., Karimi, A. 2015. Determination of thiram residues in carola seeds, water and soil samples using solid-phase microextraction with polypyrrole film followed by ion mobility spectrometer. International Journal of Environmental Analytical Chemistry 95, 57-66.
  • Bayram, E., Yılmaz, E., Uzun, L., Say, R., Denizli, A. 2017. Multiclonal plastic antibodies for selective aflatoxin extraction from food samples. Food Chemistry 221, 829 837.
  • Demirkurt, M., Olcer, Y. A., Demir, M. M., Eroğlu, A. E. 2018. Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives. Analytica Chimica Acta 1014, 1-9.
  • Eddleston, M., Buckley, N. A., Eyer, P., Dawson, A. H. 2008. Management of acute organophosphorous pesticide poisoning. Lancet 371, 597-607.
  • Gao, S., Zhang, Z., He, L. 2016. Filter-based surface-enhanced Raman spectroscopy for rapid and sensitive detection of the fungicide ferbam in water. International Journal of Environmental Analytical Chemistry 96, 1495-1506.
  • Garcia, R., Carreiro, E. P., Ramalho, J. P. P., Mirao, J., Burke, A. J., Gomes da Silva, M. D. R., Freitas, A. M. C., Cabrita, M. J. 2018. A magnetic controllable tool for the selective enrichment of dimethoate from olive oil samples: A responsive molecular imprinting-based approach. Food Chemistry 254, 309-316.
  • Kitagawa, E., Takahashi, J., Momose, Y., Iwahashi, H. 2002. Effects of the pesticide thiuram:genome-wide screening of indicator genes by yeast DNA microarray. Environmental Science and Technology 36, 3908-3915.
  • Kumar, P., Kim, K. H., Deep, A. 2015. Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosensors Bioelectronics 70, 469 481.
  • Li, Y., Liu, J., Zhang, Y., Gu, M., Wang, D., Dang, Y. Y., Ye, B. C., Li, Y. 2018. A robust electrochemical sensing platform using carbon paste electrode modified with molecularly imprinted microsphere and its application on methyl parathion detection. Biosensors and Bioelectronics 106, 71-77.
  • Long, E. Y., Krupke, C. H. 2016. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nature Communications 7, 11629.
  • Miller, J. N., Miller, J. C., 2010. Statistic and chemometrics for analytical chemistry. Pearson Education Limited, (6th edition) 278s, England.
  • Orozco, J., Cortes, A., Cheng, G., Sattayasamitsathit, S., Gao, W., Feng, X., Shen, Y., Wang, J. 2013. Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. Journal of the American Chemistry Society 135(14), 5336-5339.
  • Ou, S. H., Pan, L. S., Jow, J. J., Chen, H. R., Ling, T. R. 2018. Molecularly imprinted electrochemical sensor, formed on Ag screen-printed electrodes, for the enantioselective recognition of D and L phenylalanine. Biosensors and Bioelectronics 105, 143-150.
  • Pundir, C. S., Chauhan, N. 2012. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Analytical Biochemistry 429:19-31.
  • Songa, E. A., Okonkwo, J. O. 2016. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorous pesticides: A review. Talanta 155:289-304.
  • Soysal, M., Muti, M., Esen, C., Gençdağ, K., Aslan, A., Erdem, K. A., Karagözler, A. E. 2013. A novel and selective methylene blue imprinted polymer modified carbon paste electrode. Electroanalysis 25(5), 1278-1285.
  • Stankovic, D. M., Kalcher, K. 2016. Amperometric quantification of the pesticide ziram at boron doped diamond electrodes using flow injection analysis. Sensors and Actuators B:Chemical 233, 144-147.
  • Szabela, D. A., Duda, Z. R., Lisowska, Z., Wolf, W. M. 2017. Heavy metal uptake by Herbs. V. metal accumulation and physiological effects induced by thiuram in Ocimum basilicum L. Water, Air, Soil Pollution 228, 334-348.
  • Tang, Z. G., Liu, C. B., Wang, J., Li, H. M., Ji, Y. Wang, G. H. Lu, C. 2016. Preparation and characterization of monodisperse molecularly imprinted polymers for the recognition and enrichment of oleanolic acid. Journal of Separation Science 39, 1592-1602.
  • Xia, N., Wang, Q. L., Liu, L. 2018. Nanomaterials-based optical techniques for the detection of acetylcholinesterase and pesticides. Sensors 15, 499-514.
  • Xu, Y., Tang, Y., Zhao, Y., Gao, R., Zhang, J., Fu, D., Li, Z., Li, H., Tang, X. 2018. Bifunctional monomer magnetic imprinted nanomaterials for selective separation of tetracyclines directly from milk samples. Journal of Colloid and Interface Science 515, 18-26.
  • Yan, X., Li, H., Su, X. 2018. Review of Optical Sensors for Pesticides. Trends in Analytical Chemistry 103, 1-20.
  • Zhang, W. Y., Asiri, A. M., Liu, D. L., Du, D., Lin, Y. H. 2017. Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorous pesticides and nerve agents. Trends in Analytical Chemistry 54, 1-10.
  • Zhang, X., Yarman, A., Erdossy, J., Katz, S., Zebger, I., Jetzschmann, K. J., Altıntaş, Z., Wollenberger, U., Gyurcsanyi, R. E., Scheller, F. W. 2018. Electrosynthesized MIPs for transferrin: Plastibodies or nao-filters?. Biosensors and Bioelectronics 105, 29-35.

Voltammetric Determination of Thiuram by Carbon Paste Electrodes Modified with Molecular Imprinted Polymers

Year 2018, Issue: 14, 323 - 333, 31.12.2018
https://doi.org/10.31590/ejosat.476017

Abstract

Molecular
imprinting has become a powerful tool for the preparation of three dimensional
polymeric materials with special recognition ability. The three dimensionally
cross-linked polymeric materials are obtained by polymerization of functional
monomers in the presence of template molecule. Then, leaching of template
molecules by a leaching procedure generates the recognition cavities
complementary to the shape, size and functional groups of the template
molecules. Thus, molecularly imprinted polymers are often used because of their
stability, their resistance to temperature and pressure, resistance to effects
of the chemicals and their re-use, as well as their selective properties
against template molecule. Nowadays, molecular imprinting technique has been
successfully assembled with a several of analytical techniques in
chromatography, sensor etc.



In this study, thiuram imprinted
microbeads were synthesized and characterized by Fourier Transform Infrared
Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). A carbon paste
electrode (CPE) was modified with thiuram molecular imprinted polymer (MIP) and
used for the determination of thiuram in active substance of pesticide sample
by Differential Pulse Voltammetry (DPV).

References

  • Alizadeh, N., Kalhor, H., Karimi, A. 2015. Determination of thiram residues in carola seeds, water and soil samples using solid-phase microextraction with polypyrrole film followed by ion mobility spectrometer. International Journal of Environmental Analytical Chemistry 95, 57-66.
  • Bayram, E., Yılmaz, E., Uzun, L., Say, R., Denizli, A. 2017. Multiclonal plastic antibodies for selective aflatoxin extraction from food samples. Food Chemistry 221, 829 837.
  • Demirkurt, M., Olcer, Y. A., Demir, M. M., Eroğlu, A. E. 2018. Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives. Analytica Chimica Acta 1014, 1-9.
  • Eddleston, M., Buckley, N. A., Eyer, P., Dawson, A. H. 2008. Management of acute organophosphorous pesticide poisoning. Lancet 371, 597-607.
  • Gao, S., Zhang, Z., He, L. 2016. Filter-based surface-enhanced Raman spectroscopy for rapid and sensitive detection of the fungicide ferbam in water. International Journal of Environmental Analytical Chemistry 96, 1495-1506.
  • Garcia, R., Carreiro, E. P., Ramalho, J. P. P., Mirao, J., Burke, A. J., Gomes da Silva, M. D. R., Freitas, A. M. C., Cabrita, M. J. 2018. A magnetic controllable tool for the selective enrichment of dimethoate from olive oil samples: A responsive molecular imprinting-based approach. Food Chemistry 254, 309-316.
  • Kitagawa, E., Takahashi, J., Momose, Y., Iwahashi, H. 2002. Effects of the pesticide thiuram:genome-wide screening of indicator genes by yeast DNA microarray. Environmental Science and Technology 36, 3908-3915.
  • Kumar, P., Kim, K. H., Deep, A. 2015. Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosensors Bioelectronics 70, 469 481.
  • Li, Y., Liu, J., Zhang, Y., Gu, M., Wang, D., Dang, Y. Y., Ye, B. C., Li, Y. 2018. A robust electrochemical sensing platform using carbon paste electrode modified with molecularly imprinted microsphere and its application on methyl parathion detection. Biosensors and Bioelectronics 106, 71-77.
  • Long, E. Y., Krupke, C. H. 2016. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nature Communications 7, 11629.
  • Miller, J. N., Miller, J. C., 2010. Statistic and chemometrics for analytical chemistry. Pearson Education Limited, (6th edition) 278s, England.
  • Orozco, J., Cortes, A., Cheng, G., Sattayasamitsathit, S., Gao, W., Feng, X., Shen, Y., Wang, J. 2013. Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. Journal of the American Chemistry Society 135(14), 5336-5339.
  • Ou, S. H., Pan, L. S., Jow, J. J., Chen, H. R., Ling, T. R. 2018. Molecularly imprinted electrochemical sensor, formed on Ag screen-printed electrodes, for the enantioselective recognition of D and L phenylalanine. Biosensors and Bioelectronics 105, 143-150.
  • Pundir, C. S., Chauhan, N. 2012. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Analytical Biochemistry 429:19-31.
  • Songa, E. A., Okonkwo, J. O. 2016. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorous pesticides: A review. Talanta 155:289-304.
  • Soysal, M., Muti, M., Esen, C., Gençdağ, K., Aslan, A., Erdem, K. A., Karagözler, A. E. 2013. A novel and selective methylene blue imprinted polymer modified carbon paste electrode. Electroanalysis 25(5), 1278-1285.
  • Stankovic, D. M., Kalcher, K. 2016. Amperometric quantification of the pesticide ziram at boron doped diamond electrodes using flow injection analysis. Sensors and Actuators B:Chemical 233, 144-147.
  • Szabela, D. A., Duda, Z. R., Lisowska, Z., Wolf, W. M. 2017. Heavy metal uptake by Herbs. V. metal accumulation and physiological effects induced by thiuram in Ocimum basilicum L. Water, Air, Soil Pollution 228, 334-348.
  • Tang, Z. G., Liu, C. B., Wang, J., Li, H. M., Ji, Y. Wang, G. H. Lu, C. 2016. Preparation and characterization of monodisperse molecularly imprinted polymers for the recognition and enrichment of oleanolic acid. Journal of Separation Science 39, 1592-1602.
  • Xia, N., Wang, Q. L., Liu, L. 2018. Nanomaterials-based optical techniques for the detection of acetylcholinesterase and pesticides. Sensors 15, 499-514.
  • Xu, Y., Tang, Y., Zhao, Y., Gao, R., Zhang, J., Fu, D., Li, Z., Li, H., Tang, X. 2018. Bifunctional monomer magnetic imprinted nanomaterials for selective separation of tetracyclines directly from milk samples. Journal of Colloid and Interface Science 515, 18-26.
  • Yan, X., Li, H., Su, X. 2018. Review of Optical Sensors for Pesticides. Trends in Analytical Chemistry 103, 1-20.
  • Zhang, W. Y., Asiri, A. M., Liu, D. L., Du, D., Lin, Y. H. 2017. Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorous pesticides and nerve agents. Trends in Analytical Chemistry 54, 1-10.
  • Zhang, X., Yarman, A., Erdossy, J., Katz, S., Zebger, I., Jetzschmann, K. J., Altıntaş, Z., Wollenberger, U., Gyurcsanyi, R. E., Scheller, F. W. 2018. Electrosynthesized MIPs for transferrin: Plastibodies or nao-filters?. Biosensors and Bioelectronics 105, 29-35.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mert Soysal 0000-0002-5685-0261

Ali Ersin Karagözler This is me 0000-0001-8042-1152

Publication Date December 31, 2018
Published in Issue Year 2018 Issue: 14

Cite

APA Soysal, M., & Karagözler, A. E. (2018). Moleküler Baskılı Polimerler ile Modifiye Edilmiş Karbon Pasta Elektrotlarla Thiuramın Voltametrik Tayini. Avrupa Bilim Ve Teknoloji Dergisi(14), 323-333. https://doi.org/10.31590/ejosat.476017