Research Article
BibTex RIS Cite

Dynamic Modeling and Simulation of Quadcopter for Several Flight Conditions

Year 2019, Issue: 15, 132 - 142, 31.03.2019
https://doi.org/10.31590/ejosat.507222

Abstract

In this paper, a
four-rotor unmanned aerial vehicle was modeled, a control system was designed
and performance evaluations were made. For the control system, a separate
mathematical model of the unmanned aerial vehicle longitudinal, lateral and
vertical take-off and landing operations is omitted and is expressed as a state
space model. The mathematical model of the wind disturbances that will affect
the unmanned aerial vehicle during the flight was created and the situation was
added to the space model. Proportional Integral Derivative (PID) control
algorithm was used as the control. Unmanned aerial vehicle modeling was done in
Solidworks and simulations were done in Matlab / Simulink program. This paper is one of rare studies that source
on quadcopter modeling and control. In the next part of this study, Zankacopter
name will be used instead of quadcopter or quadrotor. 

References

  • H. ÇELİK, T. OKTAY, and İ. TÜRKMEN, "İNSANSIZ KÜÇÜK BİR HAVA ARACININ (ZANKA-I) FARKLI TÜRBÜLANS ORTAMLARINDA MODEL ÖNGÖRÜLÜ KONTROLÜ VE GÜRBÜZLÜK TESTİ," Journal of Aeronautics & Space Technologies/Havacilik ve Uzay Teknolojileri Dergisi, vol. 9, 2016.
  • R. Austin, Unmanned aircraft systems: UAVS design, development and deployment vol. 54: John Wiley & Sons, 2011.
  • G. Hoffmann, D. G. Rajnarayan, S. L. Waslander, D. Dostal, J. S. Jang, and C. J. Tomlin, "The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC)," in Digital Avionics Systems Conference, 2004. DASC 04. The 23rd, 2004, pp. 12. E. 4-121.
  • J. P. How, B. BEHIHKE, A. Frank, D. Dale, and J. Vian, "Real-time indoor autonomous vehicle test environment," IEEE control systems, vol. 28, pp. 51-64, 2008.
  • F. Šolc, "Modelling and Control of a Quadrocopter," Advanced in Military Technology, vol. 1, pp. 29-38, 2007.
  • M. Prabha, R. Thottungal, and S. Kaliappan, "Modeling and Simulation of X-Zankacopter Control," International Journal for Research in Applied Science & Engineering Technology (IJRASET).[online] Available at: http://www. ijraset. com/fileserve. php, 2016.
  • J. Wang, S. Xin, and Y. Zhang, "Modeling and Control of a Zankacopter Vehicle Subject to Disturbance Load," 2017.
  • G. Ononiwu, O. Onojo, O. Ozioko, and O. Nosiri, "Zankacopter Design for Payload Delivery," Journal of Computer and Communications, vol. 4, pp. 1-12, 2016.
  • S. C. Quebe, "Modeling, Parameter Estimation, and Navigation of Indoor Zankacopter Robots," 2013.
  • J. Li and Y. Li, "Dynamic analysis and PID control for a zankacopter," in Mechatronics and Automation (ICMA), 2011 International Conference on, 2011, pp. 573-578.
  • A. Alkamachi and E. Erçelebi, "Modelling and genetic algorithm based-PID control of H-shaped racing zankacopter," Arabian Journal for Science and Engineering, vol. 42, pp. 2777-2786, 2017.
  • M. Silva, A. Ribeiro, M. Santos, M. Carmo, L. Honório, E. Oliveira, et al., "Design of angular pid controllers for zankacopters built with low cost equipment," in System Theory, Control and Computing (ICSTCC), 2016 20th International Conference on, 2016, pp. 216-221.
  • J. T. Jang, S. T. Moon, S. Han, H. C. Gong, G.-H. Choi, I. H. Hwang, et al., "Trajectory generation with piecewise constant acceleration and tracking control of a zankacopter," in Industrial Technology (ICIT), 2015 IEEE International Conference on, 2015, pp. 530-535.
  • A. Das, F. Lewis, and K. Subbarao, "Backstepping approach for controlling a zankacopter using lagrange form dynamics," Journal of Intelligent and Robotic Systems, vol. 56, pp. 127-151, 2009.
  • Y. Naidoo, R. Stopforth, and G. Bright, "Quad-Rotor unmanned aerial vehicle helicopter modelling & control," International Journal of Advanced Robotic Systems, vol. 8, p. 45, 2011.
  • H. Bolandi, M. Rezaei, R. Mohsenipour, H. Nemati, and S. M. Smailzadeh, "Attitude control of a zankacopter with optimized PID controller," Intelligent Control and Automation, vol. 4, p. 335, 2013.
  • B. Kada and Y. Ghazzawi, "Robust PID controller design for an UAV flight control system," in Proceedings of the World Congress on Engineering and Computer Science, 2011.
  • V. Praveen and S. Pillai, "A.,“Modeling and simulation of zankacopter using PID controller”," International Journal of Control Theory and Applications, vol. 9, pp. 7151-7158, 2016.
  • Z. Benić, P. Piljek, and D. Kotarski, "Mathematical modelling of unmanned aerial vehicles with four rotors," Interdisciplinary Description of Complex Systems, vol. 14, pp. 88-100, 2016.
  • F. Sabatino, "Zankacopter control: modeling, nonlinearcontrol design, and simulation," ed, 2015.
  • A. Marks, J. F. Whidborne, and I. Yamamoto, "Control allocation for fault tolerant control of a VTOL octorotor," in Control (CONTROL), 2012 UKACC International Conference on, 2012, pp. 357-362.
  • S. Bouabdallah, P. Murrieri, and R. Siegwart, "Design and control of an indoor micro zankacopter," in Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference on, 2004, pp. 4393-4398.
  • G. Staples, "Propeller Static & Dynamic Thrust Calculation," ed, 2015.
  • T. Bresciani, "Modelling, identification and control of a zankacopter helicopter," MSc Theses, 2008.
  • T. Tengis and A. Batmunkh, "State feedback control simulation of zankacopter model," in Strategic Technology (IFOST), 2016 11th International Forum on, 2016, pp. 553-557.
  • T. Oktay and F. Sal, "Combined passive and active helicopter main rotor morphing for helicopter energy save," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 38, pp. 1511-1525, 2016.
  • P. Akyol, "Dısturbance rejectıon and attıtude control of zankacopter wıth log," Başkent Üniversitesi Fen Bilimleri Enstitüsü, 2017.
  • B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft control and simulation: dynamics, controls design, and autonomous systems: John Wiley & Sons, 2015.
  • K. O. Oktay T., "Optimal Tunning of PID Controller For Forward Flight of Research Based Zankacopter," 2. Uluslararası Multidisipliner Çalışmaları Kongresi, ADANA, TÜRKIYE, 2018.
  • K. O. Oktay T., "Optimal Tunning of PID Controller For Lateral Flight of Research Based Zankacopter," presented at the 4. Uluslararası Mesleki ve Teknik Bilimler Kongresi (UMTEB), Erzurum, 2018.
  • K. Alexis, G. Nikolakopoulos, and A. Tzes, "Constrained-control of a zankacopter helicopter for trajectory tracking under wind-gust disturbances," in MELECON 2010-2010 15th IEEE Mediterranean Electrotechnical Conference, 2010, pp. 1411-1416.
  • E. Klavins, C. Matlack, J. Palm, A. Nelson, and A. Bradford, "Quad-Rotor UAV project," 2010.
  • T. Oktay and S. Coban, "Simultaneous Longitudinal and Lateral Flight Control Systems Design for Both Passive and Active Morphing TUAVs," Elektronika ir Elektrotechnika, vol. 23, pp. 15-20, 2017.

Farkli Uçuş Durumlari Için Quadcopter Dinamik Modeli ve Simulasyonu

Year 2019, Issue: 15, 132 - 142, 31.03.2019
https://doi.org/10.31590/ejosat.507222

Abstract

Bu çalışmada dört rotorlu bir insansız hava aracının
modellenmesi yapılmış, kontrol sistemi tasarlanmış ve performans
değerlendirmeleri yapılmıştır. Kontrol sistemi için hava aracının boylamasına,
yanlamasına ve dikey kalkış, iniş harekelerinin ayrı ayrı matematiksel modeli
çıkarılmış ve durum uzay modeli şeklinde ifade edilmiştir. Hava aracına uçuş
esnasında etki edecek rüzgâr bozulmalarının da matematiksel modeli oluşturulmuş
ve durum uzay modeline eklenmiştir. Kontrolcü olarak ise Proportional Integral
Derivative (PID) kontrol algoritması kullanılmıştır. İnsansız hava aracının
modellenmesi Solidworks programında, simülasyonlar ise Matlab/Simulink
programında yapılmıştır. Bu çalışma quadcopter modellenmesi ve kontrolü üzerine
nadir kaynaklardan biridir. Bu çalışmanın bundan sonraki kısmında quadcopter
yada quadrotor terimi yerine kendi tasarımımız olan Zankacopter ismi
kullanılacaktır.

References

  • H. ÇELİK, T. OKTAY, and İ. TÜRKMEN, "İNSANSIZ KÜÇÜK BİR HAVA ARACININ (ZANKA-I) FARKLI TÜRBÜLANS ORTAMLARINDA MODEL ÖNGÖRÜLÜ KONTROLÜ VE GÜRBÜZLÜK TESTİ," Journal of Aeronautics & Space Technologies/Havacilik ve Uzay Teknolojileri Dergisi, vol. 9, 2016.
  • R. Austin, Unmanned aircraft systems: UAVS design, development and deployment vol. 54: John Wiley & Sons, 2011.
  • G. Hoffmann, D. G. Rajnarayan, S. L. Waslander, D. Dostal, J. S. Jang, and C. J. Tomlin, "The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC)," in Digital Avionics Systems Conference, 2004. DASC 04. The 23rd, 2004, pp. 12. E. 4-121.
  • J. P. How, B. BEHIHKE, A. Frank, D. Dale, and J. Vian, "Real-time indoor autonomous vehicle test environment," IEEE control systems, vol. 28, pp. 51-64, 2008.
  • F. Šolc, "Modelling and Control of a Quadrocopter," Advanced in Military Technology, vol. 1, pp. 29-38, 2007.
  • M. Prabha, R. Thottungal, and S. Kaliappan, "Modeling and Simulation of X-Zankacopter Control," International Journal for Research in Applied Science & Engineering Technology (IJRASET).[online] Available at: http://www. ijraset. com/fileserve. php, 2016.
  • J. Wang, S. Xin, and Y. Zhang, "Modeling and Control of a Zankacopter Vehicle Subject to Disturbance Load," 2017.
  • G. Ononiwu, O. Onojo, O. Ozioko, and O. Nosiri, "Zankacopter Design for Payload Delivery," Journal of Computer and Communications, vol. 4, pp. 1-12, 2016.
  • S. C. Quebe, "Modeling, Parameter Estimation, and Navigation of Indoor Zankacopter Robots," 2013.
  • J. Li and Y. Li, "Dynamic analysis and PID control for a zankacopter," in Mechatronics and Automation (ICMA), 2011 International Conference on, 2011, pp. 573-578.
  • A. Alkamachi and E. Erçelebi, "Modelling and genetic algorithm based-PID control of H-shaped racing zankacopter," Arabian Journal for Science and Engineering, vol. 42, pp. 2777-2786, 2017.
  • M. Silva, A. Ribeiro, M. Santos, M. Carmo, L. Honório, E. Oliveira, et al., "Design of angular pid controllers for zankacopters built with low cost equipment," in System Theory, Control and Computing (ICSTCC), 2016 20th International Conference on, 2016, pp. 216-221.
  • J. T. Jang, S. T. Moon, S. Han, H. C. Gong, G.-H. Choi, I. H. Hwang, et al., "Trajectory generation with piecewise constant acceleration and tracking control of a zankacopter," in Industrial Technology (ICIT), 2015 IEEE International Conference on, 2015, pp. 530-535.
  • A. Das, F. Lewis, and K. Subbarao, "Backstepping approach for controlling a zankacopter using lagrange form dynamics," Journal of Intelligent and Robotic Systems, vol. 56, pp. 127-151, 2009.
  • Y. Naidoo, R. Stopforth, and G. Bright, "Quad-Rotor unmanned aerial vehicle helicopter modelling & control," International Journal of Advanced Robotic Systems, vol. 8, p. 45, 2011.
  • H. Bolandi, M. Rezaei, R. Mohsenipour, H. Nemati, and S. M. Smailzadeh, "Attitude control of a zankacopter with optimized PID controller," Intelligent Control and Automation, vol. 4, p. 335, 2013.
  • B. Kada and Y. Ghazzawi, "Robust PID controller design for an UAV flight control system," in Proceedings of the World Congress on Engineering and Computer Science, 2011.
  • V. Praveen and S. Pillai, "A.,“Modeling and simulation of zankacopter using PID controller”," International Journal of Control Theory and Applications, vol. 9, pp. 7151-7158, 2016.
  • Z. Benić, P. Piljek, and D. Kotarski, "Mathematical modelling of unmanned aerial vehicles with four rotors," Interdisciplinary Description of Complex Systems, vol. 14, pp. 88-100, 2016.
  • F. Sabatino, "Zankacopter control: modeling, nonlinearcontrol design, and simulation," ed, 2015.
  • A. Marks, J. F. Whidborne, and I. Yamamoto, "Control allocation for fault tolerant control of a VTOL octorotor," in Control (CONTROL), 2012 UKACC International Conference on, 2012, pp. 357-362.
  • S. Bouabdallah, P. Murrieri, and R. Siegwart, "Design and control of an indoor micro zankacopter," in Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference on, 2004, pp. 4393-4398.
  • G. Staples, "Propeller Static & Dynamic Thrust Calculation," ed, 2015.
  • T. Bresciani, "Modelling, identification and control of a zankacopter helicopter," MSc Theses, 2008.
  • T. Tengis and A. Batmunkh, "State feedback control simulation of zankacopter model," in Strategic Technology (IFOST), 2016 11th International Forum on, 2016, pp. 553-557.
  • T. Oktay and F. Sal, "Combined passive and active helicopter main rotor morphing for helicopter energy save," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 38, pp. 1511-1525, 2016.
  • P. Akyol, "Dısturbance rejectıon and attıtude control of zankacopter wıth log," Başkent Üniversitesi Fen Bilimleri Enstitüsü, 2017.
  • B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft control and simulation: dynamics, controls design, and autonomous systems: John Wiley & Sons, 2015.
  • K. O. Oktay T., "Optimal Tunning of PID Controller For Forward Flight of Research Based Zankacopter," 2. Uluslararası Multidisipliner Çalışmaları Kongresi, ADANA, TÜRKIYE, 2018.
  • K. O. Oktay T., "Optimal Tunning of PID Controller For Lateral Flight of Research Based Zankacopter," presented at the 4. Uluslararası Mesleki ve Teknik Bilimler Kongresi (UMTEB), Erzurum, 2018.
  • K. Alexis, G. Nikolakopoulos, and A. Tzes, "Constrained-control of a zankacopter helicopter for trajectory tracking under wind-gust disturbances," in MELECON 2010-2010 15th IEEE Mediterranean Electrotechnical Conference, 2010, pp. 1411-1416.
  • E. Klavins, C. Matlack, J. Palm, A. Nelson, and A. Bradford, "Quad-Rotor UAV project," 2010.
  • T. Oktay and S. Coban, "Simultaneous Longitudinal and Lateral Flight Control Systems Design for Both Passive and Active Morphing TUAVs," Elektronika ir Elektrotechnika, vol. 23, pp. 15-20, 2017.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Tuğrul Oktay 0000-0003-4860-2230

Oğuz Köse 0000-0002-8069-8749

Publication Date March 31, 2019
Published in Issue Year 2019 Issue: 15

Cite

APA Oktay, T., & Köse, O. (2019). Dynamic Modeling and Simulation of Quadcopter for Several Flight Conditions. Avrupa Bilim Ve Teknoloji Dergisi(15), 132-142. https://doi.org/10.31590/ejosat.507222

Cited By








Modelling and Control of Proposed Two Dodecacopter Systems
International Journal of Applied Mathematics Electronics and Computers
Şahin YILDIRIM
https://doi.org/10.18100/ijamec.698462