Research Article
BibTex RIS Cite

An Ergonomically Sound Encapsulating System Application in an Automotive Stamping Press Line for Reducing Employee Noise Exposure

Year 2019, Issue: 15, 183 - 192, 31.03.2019
https://doi.org/10.31590/ejosat.521262

Abstract

Stamping press lines are among the highest noise sources in the automotive industry. The noise limits imposed by OSHA (Occupational Safety and Health Organization) force companies to keep employees away from these high-decibel noises. The most ergonomic and effective program for noise safety is to block the noise at the source. In this study, a press line of the Renault-Turkey automotive plant was enclosed with a novel foam-core sandwich structure to improve the comforts and ergonomics of the stamping press workshop environment. Three different encapsulating cases were applied: four sides circumferentially closed with soundproofing walls, five sides encapsulated with a closed top, and a gap-reduced case. For all three cases, the sound levels were measured in the stamping press workshop. The sound levels were reduced below 85 dB (A) in all cases. The performance of the encapsulating system was observed while producing two different parts. It was determined that this type of stamping press line should be encapsulated on all five sides to reduce the stamping workshop noise level. The four lateral sides’ sound barriers were not sufficient to soundproof the press line. The small gaps and the die changing doors were very important in the all-five-sides encapsulated case.


References

  • Brink, L. L., Talbott, E. O., Altonburks, J., Palmer, C. V. 2002. Changes over time in audiometric thresholds in a group of automobile stamping and assembly workers with a hearing conservation program. American Industrial Hygiene Association Journal, 63(4), 482–487. https://doi.org/10.1080/15428110208984737
  • Mohammadi, G. 2008. Hearing conservation programs in selected metal fabrication industries. Applied Acoustics, 69(4), 287–292. https://doi.org/10.1016/j.apacoust.2006.12.002
  • Noweir, M. H., Bafail, A. O., Jomoah, I. M. 2014. Noise pollution in metalwork and woodwork industries in the kingdom of Saudi Arabia. International Journal of Occupational Safety and Ergonomics, 20(4), 661–670. https://doi.org/10.1080/10803548.2014.11077068
  • Arezes, P. M., Bernardo, C. A., Mateus, O. A. 2012. Measurement strategies for occupational noise exposure assessment: A comparison study in different industrial environments. International Journal of Industrial Ergonomics, 42(1). https://doi.org/10.1016/j.ergon.2011.10.005
  • Berger, E. H. 1983. Laboratory Attenuation of Earmuffs and Earplugs Both Singly and in Combination. American Industrial Hygiene Association Journal, 44(5), 321–329. https://doi.org/10.1080/15298668391404905
  • Brühl, P., Ivarsson, A., Toremalm, N. G. 1994. Noise-induced Hearing Loss in an Automobile Sheet-metal Pressing Plant: A Retrospective Investigation Covering 25 Years. Scandinavian Audiology, 23(2), 83–91. https://doi.org/10.3109/01050399409047490
  • Brueck, S. E., Panaccio, M. P., Stancescu, D., Woskie, S., Estill, C., Waters, M. 2013. Noise exposure reconstruction and evaluation of exposure trends in two large automotive plants. Annals of Occupational Hygiene, 57(9), 1091–1104. https://doi.org/10.1093/annhyg/met035
  • Hsu, Y. L., Huang, C. C., Yo, C. Y., Chen, C. J., Lien, C. M. 2004. Comfort evaluation of hearing protection. International Journal of Industrial Ergonomics, 33(6), 543–551. https://doi.org/10.1016/j.ergon.2004.01.001
  • Bockstael, A., De Bruyne, L., Vinck, B., Botteldooren, D. 2013. Hearing protection in industry: Companies’ policy and workers’ perception. International Journal of Industrial Ergonomics, 43(6), 512–517. https://doi.org/10.1016/j.ergon.2012.08.009
  • Moreland, J. B., Minto, R. F. 1976. An example of in-plant noise reduction with an acoustical barrier. Applied Acoustics, 9(3), 205–214. https://doi.org/10.1016/0003-682X(76)90018-9
  • Sanders, M.S., McCormick, E. J. 1987. Human Factors in Engineering and Design. NewYork: McGraw-Hill.
  • Iasnicu, I. S. 2013. Composite materials containing textile soundproofing. Bul. Univ. Pet. – Gaze Ploiesti, 65, 91–97.
  • Rodríguez-Pérez, M. A. 2005. Crosslinked polyolefin foams: production, structure, properties, and applications. Adv. Polym. Sci., 184, 97–126.
  • Eaves, D. (Ed.). 2004. Hand book of polymer foams. Rapra Technology Limited.
  • Shimizu, T., Koizumi, S. 2015. Study of the compatibility between sound insulation performance and ventilation performance in gaps by installing nonwoven fabrics. Building and Environment, 94(P1), 335–343. https://doi.org/10.1016/j.buildenv.2015.08.020
  • Asakura, T., Sakamoto, S. 2013. Improvement of sound insulation of doors or windows by absorption treatment inside the peripheral gaps. Acoustical Science and Technology, 34(4), 241–252. https://doi.org/10.1250/ast.34.241
  • Radičević, B., Petrović, Z., Todosijević, S., Petrović, Z. 2012. Design of Noise Protection of Industrial Plants- Case Study of a Plywood Factory. In University of Nis Faculty of Occupational Safety, “Politechnica” University of Timisoara Faculty of Mechanical Engineering, in: 23rd National Conference and 4th International Conference Noise and Vibration (pp. 17–19). Retrieved from http://www.mfkv.kg.ac.rs/urbanoise/media/1210 Nis Radicevic 71-75.pdf
  • Moreland, J. B. 1984. In-plant noise-control with acoustical barriers. Noise Control Engineering Journal, 23, 106–106.
  • Asuero, A. G., Sayago, A., González, A. G. 2006. The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. https://doi.org/10.1080/10408340500526766

Çalışanların Gürültü Maruziyetini Azaltmak için Otomotiv Sac Şekillendirme Pres Hattında Ergonomik Bir Ses Yalıtım Sistemi Uygulaması

Year 2019, Issue: 15, 183 - 192, 31.03.2019
https://doi.org/10.31590/ejosat.521262

Abstract







Sac parça üretiminde kullanılan pres
hatları otomotiv endüstrisindeki en yüksek gürültü kaynakları arasındadır. OSHA
(Mesleki Güvenlik ve Sağlık Örgütü) tarafından getirilen gürültü limitleri
şirketleri çalışanlarının bu yüksek şiddetteki gürültüden uzak tutmaya
zorlamaktadır. Gürültü güvenliği için en ergonomik ve etkili yöntem gürültüyü kaynağında
engellemektir. Bu çalışmada, Renault Türkiye otomotiv fabrikasının bir pres
hattı, pres atölyesi ortamının konforunu ve ergonomisini geliştirmek için yeni
bir köpük çekirdekli sandviç yapısı ile tamamen kapatılarak ergonomik bir
gürültü önleme uygulaması gerçekleştirilmiştir. Üç farklı kapatma tasarımı
denenmiştir: a) Dört cepheden çevresel olarak kapatılmış gürültü önleme
sistemi, b) Tavanı da kapatılan beş cepheli sistem ve c) açıklıkları azaltılmış
beş cepheli kapatma sistemi. Her üç durumda da, pres atölyesinde gürültü
seviyeleri ölçülmüştür. Tüm durumlarda gürültü seviyesi 85 dB (A) altına
düşürülmüştür. Geliştirilen gürültü yalıtım sistemlerinin performansı iki
farklı sac parçanın seri üretimi esnasında ölçümlenerek gözlemlenmiştir. Pres
atölyesi gürültü seviyesini düşürmek için uygulama yapılan pres hattının beş cepheden
kapatılmasının gerektiği tespit edilmiştir. Sadece dört yan cepheli kapatma
sisteminin diğer ikisine göre daha başarısız olduğu görülmüştür. Beş cepheli kapatma
sisteminde küçük açıkların dahi iyileştirilmesinin ses yalıtımına önemli
katkısı olduğu tespit edilmiştir.

References

  • Brink, L. L., Talbott, E. O., Altonburks, J., Palmer, C. V. 2002. Changes over time in audiometric thresholds in a group of automobile stamping and assembly workers with a hearing conservation program. American Industrial Hygiene Association Journal, 63(4), 482–487. https://doi.org/10.1080/15428110208984737
  • Mohammadi, G. 2008. Hearing conservation programs in selected metal fabrication industries. Applied Acoustics, 69(4), 287–292. https://doi.org/10.1016/j.apacoust.2006.12.002
  • Noweir, M. H., Bafail, A. O., Jomoah, I. M. 2014. Noise pollution in metalwork and woodwork industries in the kingdom of Saudi Arabia. International Journal of Occupational Safety and Ergonomics, 20(4), 661–670. https://doi.org/10.1080/10803548.2014.11077068
  • Arezes, P. M., Bernardo, C. A., Mateus, O. A. 2012. Measurement strategies for occupational noise exposure assessment: A comparison study in different industrial environments. International Journal of Industrial Ergonomics, 42(1). https://doi.org/10.1016/j.ergon.2011.10.005
  • Berger, E. H. 1983. Laboratory Attenuation of Earmuffs and Earplugs Both Singly and in Combination. American Industrial Hygiene Association Journal, 44(5), 321–329. https://doi.org/10.1080/15298668391404905
  • Brühl, P., Ivarsson, A., Toremalm, N. G. 1994. Noise-induced Hearing Loss in an Automobile Sheet-metal Pressing Plant: A Retrospective Investigation Covering 25 Years. Scandinavian Audiology, 23(2), 83–91. https://doi.org/10.3109/01050399409047490
  • Brueck, S. E., Panaccio, M. P., Stancescu, D., Woskie, S., Estill, C., Waters, M. 2013. Noise exposure reconstruction and evaluation of exposure trends in two large automotive plants. Annals of Occupational Hygiene, 57(9), 1091–1104. https://doi.org/10.1093/annhyg/met035
  • Hsu, Y. L., Huang, C. C., Yo, C. Y., Chen, C. J., Lien, C. M. 2004. Comfort evaluation of hearing protection. International Journal of Industrial Ergonomics, 33(6), 543–551. https://doi.org/10.1016/j.ergon.2004.01.001
  • Bockstael, A., De Bruyne, L., Vinck, B., Botteldooren, D. 2013. Hearing protection in industry: Companies’ policy and workers’ perception. International Journal of Industrial Ergonomics, 43(6), 512–517. https://doi.org/10.1016/j.ergon.2012.08.009
  • Moreland, J. B., Minto, R. F. 1976. An example of in-plant noise reduction with an acoustical barrier. Applied Acoustics, 9(3), 205–214. https://doi.org/10.1016/0003-682X(76)90018-9
  • Sanders, M.S., McCormick, E. J. 1987. Human Factors in Engineering and Design. NewYork: McGraw-Hill.
  • Iasnicu, I. S. 2013. Composite materials containing textile soundproofing. Bul. Univ. Pet. – Gaze Ploiesti, 65, 91–97.
  • Rodríguez-Pérez, M. A. 2005. Crosslinked polyolefin foams: production, structure, properties, and applications. Adv. Polym. Sci., 184, 97–126.
  • Eaves, D. (Ed.). 2004. Hand book of polymer foams. Rapra Technology Limited.
  • Shimizu, T., Koizumi, S. 2015. Study of the compatibility between sound insulation performance and ventilation performance in gaps by installing nonwoven fabrics. Building and Environment, 94(P1), 335–343. https://doi.org/10.1016/j.buildenv.2015.08.020
  • Asakura, T., Sakamoto, S. 2013. Improvement of sound insulation of doors or windows by absorption treatment inside the peripheral gaps. Acoustical Science and Technology, 34(4), 241–252. https://doi.org/10.1250/ast.34.241
  • Radičević, B., Petrović, Z., Todosijević, S., Petrović, Z. 2012. Design of Noise Protection of Industrial Plants- Case Study of a Plywood Factory. In University of Nis Faculty of Occupational Safety, “Politechnica” University of Timisoara Faculty of Mechanical Engineering, in: 23rd National Conference and 4th International Conference Noise and Vibration (pp. 17–19). Retrieved from http://www.mfkv.kg.ac.rs/urbanoise/media/1210 Nis Radicevic 71-75.pdf
  • Moreland, J. B. 1984. In-plant noise-control with acoustical barriers. Noise Control Engineering Journal, 23, 106–106.
  • Asuero, A. G., Sayago, A., González, A. G. 2006. The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. https://doi.org/10.1080/10408340500526766
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Yücel Can 0000-0003-2086-2129

Publication Date March 31, 2019
Published in Issue Year 2019 Issue: 15

Cite

APA Can, Y. (2019). An Ergonomically Sound Encapsulating System Application in an Automotive Stamping Press Line for Reducing Employee Noise Exposure. Avrupa Bilim Ve Teknoloji Dergisi(15), 183-192. https://doi.org/10.31590/ejosat.521262