Research Article
BibTex RIS Cite

Secure Gateway for the Internet of Things

Year 2019, Issue: 16, 414 - 426, 31.08.2019
https://doi.org/10.31590/ejosat.524783

Abstract

Internet of Things (IoT)
devices includes connected devices such
as industrial embedded devices, vehicles, smart home appliance, sensors, and
actuators. Even non-internet-enabled physical devices can be part of the IoT
system through gateways. IoT platforms are getting the attraction of the attackers because of the security weakness of the
constrained devices. They can use the IoT devices for DDOS attacking or
directly attack the device to damage the overall system. Since several communication
industry standard protocols such as MQTT, AMQP, and COAP can be utilized in
an environment, communication between devices can be provided through a broker. Unencrypted
communications can be sniffed therefore username and passwords can be stolen, or message can
be modified by the attacker.
We need to provide secure authentication and encrypted
communication in order to make the systems secure. One way is the utilization
of TLS based approaches can be utilized,
but memory constrained devices cannot handle asymmetric encryption algorithms.
In this paper, we propose a new approach for IoT gateways with utilization of a
secure element has storage for keys, true random generator and FIPS standard AES 128 bit encryption capability.
We utilized the secure element/chip in two different embedded devices to test
the approach and measure performances. We developed a new embedded device
includes ARM Cortex M0 for this study and also utilize a demo card includes ARM
Cortex M3. We also propose a new method utilizes physical I2C property
of the ARM Cortex M3 to provide fast and secure communication. The approach
includes a new authentication method and encrypted communication based on the
secure element’s properties. We also investigate on the message integrity based
on the cryptographic hash and cyclic redundancy check algorithms.

References

  • ATAES132A. (n.d.). Retrieved from http://ww1.microchip.com/downloads/en/DeviceDoc/ATAES132A-Data-Sheet-40002023A.pdf
  • Banks, A., & Gupta, R. (n.d.). MQTT Version 3.1.1. Retrieved from https://www.oasis-open.org/news/announcements/mqtt-version-3-1-1-becomes-an-oasis-standard
  • Bassham, L. E. (2002). The Advanced Encryption Standard Algorithm Validation Suite (AESAVS). Retrieved from http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf
  • Bormann, C., Ersue, M., & Keränen, A. (2014, May). Terminology for Constrained-Node Networks. RFC Editor. http://doi.org/10.17487/RFC7228
  • Choi, S. K., Yang, C. H., & Kwak, J. (2018). System hardening and security monitoring for IoT devices to mitigate IoT security vulnerabilities and threats. KSII Transactions on Internet and Information Systems, 12(2), 906–918. http://doi.org/10.3837/tiis.2018.02.022
  • Chowdhury, F. S., Istiaque, A., Mahmud, A., & Miskat, M. (2018). An implementation of a lightweight end-to-end secured communication system for patient monitoring system. In 2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT) (pp. 1–5). http://doi.org/10.1109/EDCT.2018.8405076
  • Digikey. (n.d.). Retrieved December 20, 2018, from https://www.digikey.com
  • Dworkin, M. (n.d.). NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality. Retrieved from https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
  • Eclipse Paho. (n.d.). Retrieved from https://www.eclipse.org/paho/
  • Ettercap. (n.d.). Retrieved December 20, 2018, from https://www.ettercap-project.org/
  • Fathy, A., Tarrad, I. F. I. F., Hamed, H. F. A. H. F. A., & Awad, A. I. A. I. (2012). Advanced Encryption Standard Algorithm: Issues and Implementation Aspects. In Communications in Computer and Information Science. http://doi.org/10.1007/978-3-642-35326-0
  • FIPS 197: Announcing the ADVANCED ENCRYPTION STANDARD (AES). (2001). Retrieved from http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
  • Fusesource MQTT Client. (n.d.). Retrieved from https://github.com/fusesource/mqtt-client
  • Huitsing, P., Chandia, R., Papa, M., & Shenoi, S. (2008). Attack taxonomies for the Modbus protocols. International Journal of Critical Infrastructure Protection, 1, 37–44. http://doi.org/10.1016/J.IJCIP.2008.08.003
  • Ionescu, V. M. (2015). The analysis of the performance of RabbitMQ and ActiveMQ. In 2015 14th RoEduNet International Conference - Networking in Education and Research, RoEduNet NER 2015 - Proceedings (pp. 132–137). Craiova Romania. http://doi.org/10.1109/RoEduNet.2015.7311982
  • ISO/IEC 19464:2014: Advanced Message Queuing Protocol (AMQP) 1.0. (2014). Retrieved from http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64955
  • Katsikeas, S. (2016). A lightweight and secure MQTT implementation for Wireless Sensor Nodes. Technical University of Crete. Technical University of Crete.
  • King, J., & Awad, A. I. (2016). A distributed security mechanism for Resource-Constrained IoT Devices A Distributed Security Mechanism for Resource-Constrained IoT Devices, 40(June), 133–143.
  • MbedTLS. (n.d.). Retrieved from https://tls.mbed.org
  • Modbus. (n.d.). Retrieved November 21, 2018, from http://www.modbus.org
  • Mosquitto. (n.d.). Retrieved December 19, 2018, from https://mosquitto.org/
  • Naik, S., & Maral, V. (2018). Cyber security - IoT. RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Proceedings, 2018–Janua, 764–767. http://doi.org/10.1109/RTEICT.2017.8256700
  • Oliveira, C. T., Moreira, R., de Oliveira Silva, F., Miani, R. S., & Rosa, P. F. (2018). Improving Security on IoT Applications Based on the FIWARE Platform. In 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA) (pp. 686–693). http://doi.org/10.1109/AINA.2018.00104
  • OWASP IoT Vulnerabilities. (n.d.). Retrieved from https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Vulnerabilities
  • Petit, C., Standaert, F.-X., Pereira, O., Malkin, T., & Yung, M. (2007). A Block Cipher based PRNG Secure Against Side-Channel Key Recovery. In AsiaCCS (pp. 1–22). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.4352%5Cnhttps://eprint.iacr.org/2007/356.pdf
  • Schwabe, P., & Stoffelen, K. (2016). All the AES You Need on Cortex-M3 and M4. IACR Cryptology EPrint Archive, 2016, 714.
  • TinyCrypt. (n.d.). Retrieved from https://01.org/tinycrypt
  • Urbina, M., Astarloa, A., Lázaro, J., Bidarte, U., Villalta, I., & Rodriguez, M. (2017). Cyber-Physical Production System Gateway Based on a Programmable SoC Platform. IEEE Access, 5, 20408–20417. http://doi.org/10.1109/ACCESS.2017.2757048
  • Vrettos, G., Logaras, E., & Kalligeros, E. (2018). Towards Standardization of MQTT-Alert-based Sensor Networks: Protocol Structures Formalization and Low-End Node Security. In 2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES) (pp. 1–4). http://doi.org/10.1109/SIES.2018.8442109
  • Wardhani, R. W., Ogi, D., Syahral, M., & Septono, P. D. (2017). Fast implementation of AES on Cortex-M3 for security information devices. In 2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering (pp. 241–244). http://doi.org/10.1109/QIR.2017.8168489
  • Whiting, D., Housley, R., & Ferguson, N. (2003). Counter with CBC-MAC (CCM). United States: RFC Editor.

Nesnelerin İnterneti için Güvenli Ağ Geçidi

Year 2019, Issue: 16, 414 - 426, 31.08.2019
https://doi.org/10.31590/ejosat.524783

Abstract

Öz

Nesnelerin
interneti cihazları, endüstriyel gömülü sistemler, araçlar, akıllı ev
aygıtları, sensörler ve işleticiler gibi birbirine bağlı cihazlardan meydana
gelmektedir. İnternete bağlanma imkanı olmayan cihazlar dahi ağ geçitleri
sayesinde bir nesnelerin interneti sisteminin parçası olabilmektedirler.
Nesnelerin interneti sistemleri gömülü sistemlerin sahipi oldukları donanım
sınırları nedeni ile saldırganların hedefi olmaya başladı. Saldırganlar bu
cihazları DDOS ataklarından kulllanabilmekte veya doğrudan ilgili cihaza
yapılan saldırılar ile bağlı oldukları sistemlerde çok ciddi hasarlara neden
olabilmektedirler. Bir ortamda birden fazla MQTT, AMQP, ve COAP gibi iletişim
protokolünün kullanılması nedeni ile cihazlar arasındaki iletişimde aracı
olarak bir aracı/broker kullanılabilir. Saldırganlar şifresiz iletişimin bir
sonucu olarak kullanıcı adı ve parolası gibi bilgiler ağ üzerinden elde
edilebilmekte ya da mesaj içerikleri değiştirebilmektedirler. Sistemin güvenli
hale getirmek için güvenli yetkilendirme ve şifreli iletişimi sağlamamız
gerekmektedir. TLS tabanlı yaklaşımlar uygulanabilir. Ancak, gömülü sistemlerin
bellek gibi kısıtları nedeni ile asimetrik şifreleme yaklaşımlarının
uygulamakta güçlük çekilmektedir. Bu makalemizde nesnelerin internet ağ
geçitleri için güvenli anahtar depolama, gerçek rastgele üretici ve FIPS
standartlarına uygun olarak 128 bit AES şifreleme/çözme özelliklerine sahip
olan bir chipi baz alan bir yaklaşım önerilmektedir.  İki farklı gömülü sistem donanımında güvenlik chipi
kullanılarak yaklaşım test edildi ve performans değerleri ölçüldü. Bu çalışma
için ARM Cortex M0 işlemcisine dahip yeni bir gömülü system cihazı geliştirildi
ayrıca ARM Cortex M3 işlemcisine dahip bir demo kart kullanıldı. Sunulan
çalışmada ayrıca ARM Cortex M3’ün sahip olduğu fiziksel I2C özelliğini kullanan
önerdiğimiz bir metod ile düşük boyuttaki mesajlar için hızlı ve şifreli
iletişim imkanı elde ettik. Yaklaşım, chipin özelliklerini kullanan yeni kimlik
doğrulama ve şifreli iletişim metodlarını içermektedir. Ayrıca, mesajların
bütünlüğüne yönelik olarak kriptoğrafik hash ve çevrimsel fazlalık sınaması
algoritmaları kullanıldı.

References

  • ATAES132A. (n.d.). Retrieved from http://ww1.microchip.com/downloads/en/DeviceDoc/ATAES132A-Data-Sheet-40002023A.pdf
  • Banks, A., & Gupta, R. (n.d.). MQTT Version 3.1.1. Retrieved from https://www.oasis-open.org/news/announcements/mqtt-version-3-1-1-becomes-an-oasis-standard
  • Bassham, L. E. (2002). The Advanced Encryption Standard Algorithm Validation Suite (AESAVS). Retrieved from http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf
  • Bormann, C., Ersue, M., & Keränen, A. (2014, May). Terminology for Constrained-Node Networks. RFC Editor. http://doi.org/10.17487/RFC7228
  • Choi, S. K., Yang, C. H., & Kwak, J. (2018). System hardening and security monitoring for IoT devices to mitigate IoT security vulnerabilities and threats. KSII Transactions on Internet and Information Systems, 12(2), 906–918. http://doi.org/10.3837/tiis.2018.02.022
  • Chowdhury, F. S., Istiaque, A., Mahmud, A., & Miskat, M. (2018). An implementation of a lightweight end-to-end secured communication system for patient monitoring system. In 2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT) (pp. 1–5). http://doi.org/10.1109/EDCT.2018.8405076
  • Digikey. (n.d.). Retrieved December 20, 2018, from https://www.digikey.com
  • Dworkin, M. (n.d.). NIST Special Publication 800-38C: Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality. Retrieved from https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
  • Eclipse Paho. (n.d.). Retrieved from https://www.eclipse.org/paho/
  • Ettercap. (n.d.). Retrieved December 20, 2018, from https://www.ettercap-project.org/
  • Fathy, A., Tarrad, I. F. I. F., Hamed, H. F. A. H. F. A., & Awad, A. I. A. I. (2012). Advanced Encryption Standard Algorithm: Issues and Implementation Aspects. In Communications in Computer and Information Science. http://doi.org/10.1007/978-3-642-35326-0
  • FIPS 197: Announcing the ADVANCED ENCRYPTION STANDARD (AES). (2001). Retrieved from http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
  • Fusesource MQTT Client. (n.d.). Retrieved from https://github.com/fusesource/mqtt-client
  • Huitsing, P., Chandia, R., Papa, M., & Shenoi, S. (2008). Attack taxonomies for the Modbus protocols. International Journal of Critical Infrastructure Protection, 1, 37–44. http://doi.org/10.1016/J.IJCIP.2008.08.003
  • Ionescu, V. M. (2015). The analysis of the performance of RabbitMQ and ActiveMQ. In 2015 14th RoEduNet International Conference - Networking in Education and Research, RoEduNet NER 2015 - Proceedings (pp. 132–137). Craiova Romania. http://doi.org/10.1109/RoEduNet.2015.7311982
  • ISO/IEC 19464:2014: Advanced Message Queuing Protocol (AMQP) 1.0. (2014). Retrieved from http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64955
  • Katsikeas, S. (2016). A lightweight and secure MQTT implementation for Wireless Sensor Nodes. Technical University of Crete. Technical University of Crete.
  • King, J., & Awad, A. I. (2016). A distributed security mechanism for Resource-Constrained IoT Devices A Distributed Security Mechanism for Resource-Constrained IoT Devices, 40(June), 133–143.
  • MbedTLS. (n.d.). Retrieved from https://tls.mbed.org
  • Modbus. (n.d.). Retrieved November 21, 2018, from http://www.modbus.org
  • Mosquitto. (n.d.). Retrieved December 19, 2018, from https://mosquitto.org/
  • Naik, S., & Maral, V. (2018). Cyber security - IoT. RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Proceedings, 2018–Janua, 764–767. http://doi.org/10.1109/RTEICT.2017.8256700
  • Oliveira, C. T., Moreira, R., de Oliveira Silva, F., Miani, R. S., & Rosa, P. F. (2018). Improving Security on IoT Applications Based on the FIWARE Platform. In 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA) (pp. 686–693). http://doi.org/10.1109/AINA.2018.00104
  • OWASP IoT Vulnerabilities. (n.d.). Retrieved from https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Vulnerabilities
  • Petit, C., Standaert, F.-X., Pereira, O., Malkin, T., & Yung, M. (2007). A Block Cipher based PRNG Secure Against Side-Channel Key Recovery. In AsiaCCS (pp. 1–22). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.4352%5Cnhttps://eprint.iacr.org/2007/356.pdf
  • Schwabe, P., & Stoffelen, K. (2016). All the AES You Need on Cortex-M3 and M4. IACR Cryptology EPrint Archive, 2016, 714.
  • TinyCrypt. (n.d.). Retrieved from https://01.org/tinycrypt
  • Urbina, M., Astarloa, A., Lázaro, J., Bidarte, U., Villalta, I., & Rodriguez, M. (2017). Cyber-Physical Production System Gateway Based on a Programmable SoC Platform. IEEE Access, 5, 20408–20417. http://doi.org/10.1109/ACCESS.2017.2757048
  • Vrettos, G., Logaras, E., & Kalligeros, E. (2018). Towards Standardization of MQTT-Alert-based Sensor Networks: Protocol Structures Formalization and Low-End Node Security. In 2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES) (pp. 1–4). http://doi.org/10.1109/SIES.2018.8442109
  • Wardhani, R. W., Ogi, D., Syahral, M., & Septono, P. D. (2017). Fast implementation of AES on Cortex-M3 for security information devices. In 2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering (pp. 241–244). http://doi.org/10.1109/QIR.2017.8168489
  • Whiting, D., Housley, R., & Ferguson, N. (2003). Counter with CBC-MAC (CCM). United States: RFC Editor.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Cengiz Toğay 0000-0001-5739-1784

Gökhan Mutlu This is me 0000-0002-0674-2908

Durmuş Kurtuluş This is me 0000-0002-1154-5300

Faik Özgür This is me 0000-0001-5363-5737

Publication Date August 31, 2019
Published in Issue Year 2019 Issue: 16

Cite

APA Toğay, C., Mutlu, G., Kurtuluş, D., Özgür, F. (2019). Secure Gateway for the Internet of Things. Avrupa Bilim Ve Teknoloji Dergisi(16), 414-426. https://doi.org/10.31590/ejosat.524783