Research Article
BibTex RIS Cite

Fiziksel Değişimlerin Li-ion Batarya Üzerine Etkilerinin İncelenmesi

Year 2019, Issue: 16, 235 - 241, 31.08.2019

Abstract

Batarya teknolojilerindeki
ilerlemeler ile birlikte li-ion bataryaların ağırlık, hacim başına
depoladıkları enerji miktarı artmakta ve kontrol sistemlerinde önemli
gelişmeler meydana gelmektedir. Bunun yanında li-ion batarya fiyatlarının
düşmesi ile elektrikli araçlardan kullanıcı elektroniğine kadar birçok alanda
li-ion bataryaların kullanım oranının arttığı görülmektedir. Ancak bu
bataryaların yüksek performanslı kullanımı için sağlık, doluluk durumlarının
sürekli takibi ve denetlenmesi gerekmektedir. Bu denetleme yaygın olarak
hücrelerin gerilim, akım ve sıcaklık değerini kullanarak yapılmaktadır. Buna
karşılık bataryanın güvenlik durumunun takibinde hücrelerin şişmesi ve fiziksel
yıpranmalarında bir fonksiyon girdisi olarak kullanılması gerekmektedir.
Özellikle taşınabilir telefon, bilgisayar gibi cihazlarda kullanıcının doğrudan
bataryaya temas etmesi güvenlik problemi yaratmaktadır. Kullanıcıların sahip
olduğu farklı şarj cihazları kullanma, hızlı şarj ve şarj esnasında kullanım
alışkanlıkları sebebiyle bu güvenlik problemleri artmaktadır. Ayrıca elektrikli
araçlarda seri/paralel paketlenen hücreler şişerek komşu hücreler üzerindeki
basıncı arttırmaktadır. Yapılan çalışmada gerinime bağlı değişimlerin
gözlemlenmesi ve etkilerinin incelenmesi amacıyla yüksek hassasiyetli gerinim,
sıcaklık sensörü ve Z-Wave haberleşme modülüne sahip bir sistem tasarlanmıştır.
Pazarda yaygın olarak kullanılan bir taşınabilir telefonun bataryası üzerinde
yaşlandırma testleri yapılmış ve 4.58 mm şişme sağlanmıştır. Fiziksel değişime
maruz kalmış batarya ile yeni bataryanın davranışları aynı şarj/deşarj
döngülerine tabi tutularak şişmenin etkileri sunulmuştur. Yapılan ölçümler ile
sıcaklık, şişme miktarı, açık devre gerilimi ve şarj/deşarj süresinin değişim
miktarları detaylıca belirtilmiştir. Şişmeye maruz kalmış bataryanın şarj ve
deşarj sırasında şişme miktarının değişimi ile yüzeyde ortaya çıkan yüksek
sıcaklıklar sebebiyle kullanıcı için tehlikelerin ortaya çıktığı
gösterilmiştir. Bu durum taşınabilir telefonlar ve bilgisayarlarda bir güvenlik
faktörü olarak şişmeninde sürekli takip edilmesi gerekliliğini ortaya
çıkarmaktadır.

References

  • Berecibar, M. ve ark., 2016. Critical review of state of health estimation methods of li-ion batteries of real applications. Renewable and Sustainable Energy Reviews, 56: 572-587.
  • Castillo, E.C., Niedermeier, F. & Jossen, A., 2016. Calculation of the state of safety (SOS) for lithium ion batteries. Journal of Power Sources, 324: 509-520.
  • Chen, X. ve ark., 2012. An overview of lithium-ion batteries for electric vehicles. 10th International Power & Energy Conference, Ho Chi Minh, Vietnam: 230-235.
  • Cheng, X. & Pecht, M., 2017. In situ stress measurement techniques on li-ion batery electrodes: a review. Energies, 591(10): 1-19.
  • Farmer, J. ve ark., 2014. Wireless battery management system for safe high-capacity energy storage. Materials Research Society Spring Meeting, San Francisco, California: 1-5.
  • Gor, G.Y. ve ark., 2015. Swelling and softening of lithium-ion battery seperators in electrolyte solvents. Journal of Power Sources, 294: 167-172.
  • Hoque, M.A. & Tarkoma, S., 2015. Sudden drop in the battery level? Understanding smartphone state of charge anomaly. HotPower’15, Monterey, CA: 1-15.
  • Horiba, T., 2014. Lithium-ion battery system. Proceedings of the IEEE, 102(6): 939-950.
  • Knobloch, A., Stefanopoulou, A. & Anderson, D. Control enabling solutions with ultrathin strain and temperature sensor system for reduced battery life cycle cost. http://www.arpa-e.energy.gov/sites/default/files/documents/files/Day_1_6E.pdf adresinden elde edildi.
  • Koch, S., Birke, K.P. & Kuhn, R., 2018. Fast thermal runaway detection for lithium-ion cells in large scale traction batteries. Batteries, 16(4): 1-11.
  • Lee, K.H., Song, E. & Lim, H.S. Swelling mechanism of the lithium ion batteries at high temperature. http://www.electrochem.org/dl/ma/203/pdfs/0110.pdf adresinden elde edildi.
  • Oh, K.Y. ve ark., 2014. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. Journal of Power Sources, 251: 38-54.
  • Oh, K.Y. ve ark., 2016. Phenomenological force and swelling models for rechargeable lithium-ion battery cells. Journal of Power Sources, 310: 118-129.
  • Wang, W., Fleischer, C. & Saver, D.U., 2014. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. Journal of Power Sources, 258: 321-339.
  • Zhan, Y., Deng, J. & Wang, T., 2013. Lithium battery swollen detection based on computer vision. IEEE 4th International Conference on Software Engineering and Service Science, Beijing, China: 728-731.
  • Zhang, J. ve ark., 2018. An overview on thermal safety issues of lithium-ion batteries for electric vehicle application. IEEE Access, 6: 23848-23863.
  • Zhao, Y. ve ark., 2019. Localized swelling inhomogeneity detection in lithium ion cells using multi-dimensional laser scanning, 166(2): A27-A34.

Investigation of the Effects of Physical Changes on Li-ion Battery

Year 2019, Issue: 16, 235 - 241, 31.08.2019

Abstract

With the advances in battery technologies, the
li-ion battery’s amount of energy storage per unit volume and weight increases
and significant improvements occur in their control systems. Besides, the usage
rate of li-ion batteries increases due to the decrease in prices of li-ion
batteries in many areas from electric vehicles to user electronics. However,
for high-performance use of these batteries, continuous monitor and control of
their states of health and charge are needed. This control is commonly
performed by using the voltage, current and temperature of the cells. In
contrast, swelling and physical deformations of the cells should be used as
function inputs in the monitoring of the state of safety condition. Especially
for devices such as mobile phones and portable computers which directly touch to
person, causes serious safety problems. In addition, the user's various usage
habits which are using different battery chargers, fast charging and using in
the charging process, lead to safety problems. In addition, in the electric
vehicles, the series/parallel packaged cells swell and thus increase the
pressure on the neighboring cells. In this study, a system with a high
precision strain gauge, temperature sensor and Z-Wave communication module has
been designed to observe the effects of strain changes and to investigate their
effects. Aging tests have been performed on one single battery used in the
market and a 4.58 mm swelling has been achieved. The behavior of the new
battery and aged battery which has physical deformation is applied to the same
charge/discharge cycles and the effects of the swelling are presented.
Measurements of temperature, swelling amount, open circuit voltage and
charge/discharge time of the amount of change are stated in detail. It has been
shown that dangers occur for the user due to the high temperatures on the surface
caused by the amount of swelling of the battery exposed to swelling during
charge and discharge. This situation reveals the necessity of continuous
monitoring of the swelling as a safety factor in mobile phones and portable
computers.

References

  • Berecibar, M. ve ark., 2016. Critical review of state of health estimation methods of li-ion batteries of real applications. Renewable and Sustainable Energy Reviews, 56: 572-587.
  • Castillo, E.C., Niedermeier, F. & Jossen, A., 2016. Calculation of the state of safety (SOS) for lithium ion batteries. Journal of Power Sources, 324: 509-520.
  • Chen, X. ve ark., 2012. An overview of lithium-ion batteries for electric vehicles. 10th International Power & Energy Conference, Ho Chi Minh, Vietnam: 230-235.
  • Cheng, X. & Pecht, M., 2017. In situ stress measurement techniques on li-ion batery electrodes: a review. Energies, 591(10): 1-19.
  • Farmer, J. ve ark., 2014. Wireless battery management system for safe high-capacity energy storage. Materials Research Society Spring Meeting, San Francisco, California: 1-5.
  • Gor, G.Y. ve ark., 2015. Swelling and softening of lithium-ion battery seperators in electrolyte solvents. Journal of Power Sources, 294: 167-172.
  • Hoque, M.A. & Tarkoma, S., 2015. Sudden drop in the battery level? Understanding smartphone state of charge anomaly. HotPower’15, Monterey, CA: 1-15.
  • Horiba, T., 2014. Lithium-ion battery system. Proceedings of the IEEE, 102(6): 939-950.
  • Knobloch, A., Stefanopoulou, A. & Anderson, D. Control enabling solutions with ultrathin strain and temperature sensor system for reduced battery life cycle cost. http://www.arpa-e.energy.gov/sites/default/files/documents/files/Day_1_6E.pdf adresinden elde edildi.
  • Koch, S., Birke, K.P. & Kuhn, R., 2018. Fast thermal runaway detection for lithium-ion cells in large scale traction batteries. Batteries, 16(4): 1-11.
  • Lee, K.H., Song, E. & Lim, H.S. Swelling mechanism of the lithium ion batteries at high temperature. http://www.electrochem.org/dl/ma/203/pdfs/0110.pdf adresinden elde edildi.
  • Oh, K.Y. ve ark., 2014. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. Journal of Power Sources, 251: 38-54.
  • Oh, K.Y. ve ark., 2016. Phenomenological force and swelling models for rechargeable lithium-ion battery cells. Journal of Power Sources, 310: 118-129.
  • Wang, W., Fleischer, C. & Saver, D.U., 2014. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. Journal of Power Sources, 258: 321-339.
  • Zhan, Y., Deng, J. & Wang, T., 2013. Lithium battery swollen detection based on computer vision. IEEE 4th International Conference on Software Engineering and Service Science, Beijing, China: 728-731.
  • Zhang, J. ve ark., 2018. An overview on thermal safety issues of lithium-ion batteries for electric vehicle application. IEEE Access, 6: 23848-23863.
  • Zhao, Y. ve ark., 2019. Localized swelling inhomogeneity detection in lithium ion cells using multi-dimensional laser scanning, 166(2): A27-A34.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ömer Cihan Kıvanç 0000-0003-0880-134X

Publication Date August 31, 2019
Published in Issue Year 2019 Issue: 16

Cite

APA Kıvanç, Ö. C. (2019). Fiziksel Değişimlerin Li-ion Batarya Üzerine Etkilerinin İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(16), 235-241.