Research Article
BibTex RIS Cite

Determining The Effect of Finite Element Calculation Parameters on Sheet Metal Forming Simulation Time and Accuracy

Year 2019, Issue: 16, 92 - 108, 31.08.2019
https://doi.org/10.31590/ejosat.555491

Abstract

The most significant output of a finite element analyses is the prediction accuracy. Effective parameters on the prediction accuracy can be defined as finite element calculation parameters which are independent of the process and generates the modeling stages. Besides the prediction accuracy, simulation time is another critical parameter especially in terms of mass production industry. Simulation time must be minimized without compromising prediction accuracy for increasing efficiency of the finite element analyses. In this context, calculation parameters must be well defined and determination on simulation time and accuracy must be analyzed. The aim of this study is to determine the effects of finite element calculation parameters on sheet metal forming simulation time and accuracy. In this context, symmetry condition, element size, element formulation, number of integration points, time step size, adaptivity level, forming speed, plasticity model, and number of cores in CPU are analyzed as finite element calculation parameters. Square cup drawing is used as sheet metal forming process due to its capability to analyzing formability properties of materials. TRIP600 advanced high strength steel is used as material. Forming force vs. punch stroke curve is used as experimental result for validating the finite element simulation prediction accuracy. Then, simulations with determinated parameters were performed with selected values and effects of these parameters on simulation time and accuracy are contained. As a result of simulations, symmetry condition is obtained as the dominant parameter on simulation time. Simulation with productive parameters minimized the simulation time as 90%. Preliminarily, simulation time determined as 2514 seconds and as a result of this study simulation time is decreased to 94 seconds.

References

  • Wang, C., Zhang, X., Shen, G., & Wang, Y. (2019). One-step inverse isogeometric analysis for the simulation of sheet metal forming. Computer Methods in Applied Mechanics and Engineering.
  • Candra, S., Batan, I. M. L., Berata, W., & Pramono, A. S. (2015). Analytical study and FEM simulation of the maximum varying blank holder force to prevent cracking on cylindrical cup deep drawing. Procedia Cirp, 26, 548-553.
  • Qin, S. J., Xiong, B. Q., Hong, L. U., & Zhang, T. T. (2012). Critical blank-holder force in axisymmetric deep drawing. Transactions of Nonferrous Metals Society of China, 22, s239-s246.
  • Baffari, D., Buffa, G., Ingarao, G., Masnata, A., & Fratini, L. (2019). Aluminium sheet metal scrap recycling through friction consolidation. Procedia Manufacturing, 29, 560-566.
  • Seshacharyulu, K., Bandhavi, C., Naik, B. B., Rao, S. S., & Singh, S. K. (2018). Understanding Friction in sheet metal forming-A review. Materials Today: Proceedings, 5(9), 18238-18244.
  • Zhang, Q. F., Cai, Z. Y., Zhang, Y., & Li, M. Z. (2013). Springback compensation method for doubly curved plate in multi-point forming. Materials & Design, 47, 377-385.
  • Dahale, P. S., Pawar, P. D., & Patil, V. G. (2018). Assessment of Boundary Conditions for FEA of Mounting Bracket Using Co-relation with Experimental Results. Materials Today: Proceedings, 5(5), 13290-13300.
  • He, B., Yang, W., & Liu, F. (2019). The material parameter design and finite element simulation of the quadrilateral thermal cloak device. Applied Mathematics Letters, 94, 99-104.
  • Chen, K., Ma, H., Che, L., Li, Z., & Wen, B. (2019). Comparison of meshing characteristics of helical gears with spalling fault using analytical and finite-element methods. Mechanical Systems and Signal Processing, 121, 279-298.
  • Macneal, R. H., & Harder, R. L. (1985). A proposed standard set of problems to test finite element accuracy. Finite elements in analysis and design, 1(1), 3-20.
  • Ewing, R. E., Lin, T., & Lin, Y. (2002). On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM Journal on Numerical Analysis, 39(6), 1865-1888.
  • Dawson, P. R., & Marin, E. B. (1997). Computational mechanics for metal deformation processes using polycrystal plasticity. In Advances in applied mechanics (Vol. 34, pp. 77-169). Elsevier.
  • Chun, B. K., Jinn, J. T., & Lee, J. K. (2002). Modeling the Bauschinger effect for sheet metals, part I: theory. International Journal of Plasticity, 18(5-6), 571-595.
  • Habraken, A. M. (2004). Modelling the plastic anisotropy of metals. Archives of Computational Methods in Engineering, 11(1), 3-96.
  • Xue, L., & Wierzbicki, T. (2008). Ductile fracture initiation and propagation modeling using damage plasticity theory. Engineering Fracture Mechanics, 75(11), 3276-3293.
  • Godest, A. C., Beaugonin, M., Haug, E., Taylor, M., & Gregson, P. J. (2002). Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. Journal of biomechanics, 35(2), 267-275.
  • Maker, B. N., & Zhu, X. (2000). Input parameters for metal forming simulation using LS-DYNA. Livermore Software Technology Corporation, 4, 43-46.
  • Carson, Y., & Maria, A. (1997, December). Simulation optimization: methods and applications. In Proceedings of the 29th conference on Winter simulation (pp. 118-126). IEEE Computer Society.
  • Swisher, J. R., Hyden, P. D., Jacobson, S. H., & Schruben, L. W. (2000). A survey of simulation optimization techniques and procedures. In 2000 Winter Simulation Conference Proceedings (Cat. No. 00CH37165) (Vol. 1, pp. 119-128). IEEE.
  • Wang, J. (2001). Simulation of landmine explosion using LS-DYNA3D software: benchmark work of simulation of explosion in soil and air (No. DSTO-TR-1168). Defence science and technology organisation canberra (Australia).
  • Wang, L., Basu, P. K., & Leiva, J. P. (2004). Automobile body reinforcement by finite element optimization. Finite Elements in Analysis and Design, 40(8), 879-893.
  • Parthasarathy, V. N., & Kodiyalam, S. (1991). A constrained optimization approach to finite element mesh smoothing. Finite Elements in Analysis and Design, 9(4), 309-320.
  • Crawford, R. P., Rosenberg, W. S., & Keaveny, T. M. (2003). Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. Journal of biomechanical engineering, 125(4), 434-438.
  • Elmarakbi, A. M., Hu, N., & Fukunaga, H. (2009). Finite element simulation of delamination growth in composite materials using LS-DYNA. Composites Science and Technology, 69(14), 2383-2391.
  • Hughes, T. J., Liu, W. K., & Zimmermann, T. K. (1981). Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer methods in applied mechanics and engineering, 29(3), 329-349.
  • Belytschko, T., Lin, J. I., & Chen-Shyh, T. (1984). Explicit algorithms for the nonlinear dynamics of shells. Computer methods in applied mechanics and engineering, 42(2), 225-251.
  • Ls-Dyna Theoretical Manual. (1998). Livermore Software Technology Corporation.
  • Mete, O. H. (2007). Sac levhaların şekillendirilebilirliğine etki eden değişkenliklerin incelenmesi. Doktora Tezi, Sakarya Üniversitesi.
  • Holloman, J. H. (1945). Tensile Deformation, Transactions of the American Institue of Mining and Metallalurgical Engineers, 162:268-290.
  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. London, 281-297.
  • Barlat, F., Lian, J. (1989). Plastic behaviour and stretchability of sheet metals (Part I): A yield function for orthotropic sheet under plane stress conditions, International Journal of Plasticity, 5:51–56.
  • Yoshida, F., & Uemori, T. (2002). A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation. International journal of plasticity, 18(5-6), 661-686.
  • Akpınar, M., Esener, E., Ercan, S., Özsoy, M., & Fırat, M. (April-2012) Trip600 Çeliğinin Kare Kesit Çekilebilirliğinin Sonlu Elemanlar Tahmini. In proceedings of International Iron & Steel Symposium, Karabük, Turkey.
  • Harpell, E. T., Worswick, M. J., Finn, M., Jain, M., & Martin, P. (2000). Numerical prediction of the limiting draw ratio for aluminum alloy sheet. Journal of Materials Processing Technology, 100(1-3), 131-141.

Sonlu Elemanlar Hesaplama Parametrelerinin Sac Metal Şekillendirme Simülasyon Süresi ve Hassasiyetine Etkisinin Tespiti

Year 2019, Issue: 16, 92 - 108, 31.08.2019
https://doi.org/10.31590/ejosat.555491

Abstract

Bir sonlu elemanlar analizinin en önemli çıktısı tahmin hassasiyetidir. Tahmin hassasiyetine etki eden parametreler prosesten bağımsız durumda olan ve modelleme adımlarını oluşturan sonlu elemanlar hesaplama parametreleridir. Simülasyon hassasiyetinin yanı sıra özellikle seri imalat endüstrisi açısından simülasyon çözüm süresi bir diğer kritik parametredir. Sonlu elemanlar analizlerinde verimin yükseltilebilmesi için hassasiyetten ödün vermeden minimum sürede çözümün tamamlanması gerekmektedir. Bu kapsamda hesaplama parametrelerinin iyi analiz edilip hassasiyete ve simülasyon süresine etkilerinin tespit edilmesi önem arz etmektedir. Yapılan çalışmanın amacı, sonlu elemanlar hesaplama parametrelerinin sac metal şekillendirme simülasyon süresi ve hassasiyetine etkisinin tespit edilmesidir. Bu kapsamda non-lineer sac metal şekillendirme simülasyonlarında hesaplama parametrelerinden simetri durumu, eleman boyutu, eleman formülasyonu, integrasyon nokta sayısı, zaman adım aralığı, adaptiv ağ yapısı derecesi, şekillendirme hızı etkisi, plastisite modeli ve çözümün gerçekleştirildiği sistemin çekirdek sayısı olmak üzere geniş bir küme analiz edilmiştir. Sac metal şekillendirme prosesi olarak malzeme şekillendirilebilirlik özelliklerinin belirgin şekilde analiz edilebildiği kare kutu çekme prosesi tercih edilmiştir. Malzeme olarak ise gelişmiş yüksek mukavemetli çeliklerden TRIP780 kullanılmıştır. Sonlu elemanlar analizi hassasiyetinin belirlenmesi amacıyla şekillendirme kuvvetinin zımba ilerleme mesafesine göre değişimini temsil eden deneysel eğri referans alınmıştır. Sonrasında belirlenen parametrelerin değişken değerlerinde simülasyonlar gerçekleştirilmiş olup her parametrenin hassasiyete ve çözüm süresine etkisi tespit edilmiştir. Bu kapsamda deneysel eğrinin tahmin edilebilirliği her parametre için incelenmiştir. Yapılan simülasyon sonucunda süreye etki eden en baskın parametrenin sonlu elemanlar modelinin simetri durumu olduğu tespit edilmiştir. Parametre kümelerinden süreyi minimize eden parametrelerin tespiti sonrasında elde edilen en verimli simülasyon sonucunda başlangıç durumuna göre hassasiyetten ödün vermeden zamandan %90 oranında tasarruf edilmiştir. Başlangıçta 2514 saniye süren simülasyon aynı hassasiyeti içerecek şekilde 94 saniyede tamamlanmıştır.

References

  • Wang, C., Zhang, X., Shen, G., & Wang, Y. (2019). One-step inverse isogeometric analysis for the simulation of sheet metal forming. Computer Methods in Applied Mechanics and Engineering.
  • Candra, S., Batan, I. M. L., Berata, W., & Pramono, A. S. (2015). Analytical study and FEM simulation of the maximum varying blank holder force to prevent cracking on cylindrical cup deep drawing. Procedia Cirp, 26, 548-553.
  • Qin, S. J., Xiong, B. Q., Hong, L. U., & Zhang, T. T. (2012). Critical blank-holder force in axisymmetric deep drawing. Transactions of Nonferrous Metals Society of China, 22, s239-s246.
  • Baffari, D., Buffa, G., Ingarao, G., Masnata, A., & Fratini, L. (2019). Aluminium sheet metal scrap recycling through friction consolidation. Procedia Manufacturing, 29, 560-566.
  • Seshacharyulu, K., Bandhavi, C., Naik, B. B., Rao, S. S., & Singh, S. K. (2018). Understanding Friction in sheet metal forming-A review. Materials Today: Proceedings, 5(9), 18238-18244.
  • Zhang, Q. F., Cai, Z. Y., Zhang, Y., & Li, M. Z. (2013). Springback compensation method for doubly curved plate in multi-point forming. Materials & Design, 47, 377-385.
  • Dahale, P. S., Pawar, P. D., & Patil, V. G. (2018). Assessment of Boundary Conditions for FEA of Mounting Bracket Using Co-relation with Experimental Results. Materials Today: Proceedings, 5(5), 13290-13300.
  • He, B., Yang, W., & Liu, F. (2019). The material parameter design and finite element simulation of the quadrilateral thermal cloak device. Applied Mathematics Letters, 94, 99-104.
  • Chen, K., Ma, H., Che, L., Li, Z., & Wen, B. (2019). Comparison of meshing characteristics of helical gears with spalling fault using analytical and finite-element methods. Mechanical Systems and Signal Processing, 121, 279-298.
  • Macneal, R. H., & Harder, R. L. (1985). A proposed standard set of problems to test finite element accuracy. Finite elements in analysis and design, 1(1), 3-20.
  • Ewing, R. E., Lin, T., & Lin, Y. (2002). On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM Journal on Numerical Analysis, 39(6), 1865-1888.
  • Dawson, P. R., & Marin, E. B. (1997). Computational mechanics for metal deformation processes using polycrystal plasticity. In Advances in applied mechanics (Vol. 34, pp. 77-169). Elsevier.
  • Chun, B. K., Jinn, J. T., & Lee, J. K. (2002). Modeling the Bauschinger effect for sheet metals, part I: theory. International Journal of Plasticity, 18(5-6), 571-595.
  • Habraken, A. M. (2004). Modelling the plastic anisotropy of metals. Archives of Computational Methods in Engineering, 11(1), 3-96.
  • Xue, L., & Wierzbicki, T. (2008). Ductile fracture initiation and propagation modeling using damage plasticity theory. Engineering Fracture Mechanics, 75(11), 3276-3293.
  • Godest, A. C., Beaugonin, M., Haug, E., Taylor, M., & Gregson, P. J. (2002). Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. Journal of biomechanics, 35(2), 267-275.
  • Maker, B. N., & Zhu, X. (2000). Input parameters for metal forming simulation using LS-DYNA. Livermore Software Technology Corporation, 4, 43-46.
  • Carson, Y., & Maria, A. (1997, December). Simulation optimization: methods and applications. In Proceedings of the 29th conference on Winter simulation (pp. 118-126). IEEE Computer Society.
  • Swisher, J. R., Hyden, P. D., Jacobson, S. H., & Schruben, L. W. (2000). A survey of simulation optimization techniques and procedures. In 2000 Winter Simulation Conference Proceedings (Cat. No. 00CH37165) (Vol. 1, pp. 119-128). IEEE.
  • Wang, J. (2001). Simulation of landmine explosion using LS-DYNA3D software: benchmark work of simulation of explosion in soil and air (No. DSTO-TR-1168). Defence science and technology organisation canberra (Australia).
  • Wang, L., Basu, P. K., & Leiva, J. P. (2004). Automobile body reinforcement by finite element optimization. Finite Elements in Analysis and Design, 40(8), 879-893.
  • Parthasarathy, V. N., & Kodiyalam, S. (1991). A constrained optimization approach to finite element mesh smoothing. Finite Elements in Analysis and Design, 9(4), 309-320.
  • Crawford, R. P., Rosenberg, W. S., & Keaveny, T. M. (2003). Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. Journal of biomechanical engineering, 125(4), 434-438.
  • Elmarakbi, A. M., Hu, N., & Fukunaga, H. (2009). Finite element simulation of delamination growth in composite materials using LS-DYNA. Composites Science and Technology, 69(14), 2383-2391.
  • Hughes, T. J., Liu, W. K., & Zimmermann, T. K. (1981). Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer methods in applied mechanics and engineering, 29(3), 329-349.
  • Belytschko, T., Lin, J. I., & Chen-Shyh, T. (1984). Explicit algorithms for the nonlinear dynamics of shells. Computer methods in applied mechanics and engineering, 42(2), 225-251.
  • Ls-Dyna Theoretical Manual. (1998). Livermore Software Technology Corporation.
  • Mete, O. H. (2007). Sac levhaların şekillendirilebilirliğine etki eden değişkenliklerin incelenmesi. Doktora Tezi, Sakarya Üniversitesi.
  • Holloman, J. H. (1945). Tensile Deformation, Transactions of the American Institue of Mining and Metallalurgical Engineers, 162:268-290.
  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. London, 281-297.
  • Barlat, F., Lian, J. (1989). Plastic behaviour and stretchability of sheet metals (Part I): A yield function for orthotropic sheet under plane stress conditions, International Journal of Plasticity, 5:51–56.
  • Yoshida, F., & Uemori, T. (2002). A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation. International journal of plasticity, 18(5-6), 661-686.
  • Akpınar, M., Esener, E., Ercan, S., Özsoy, M., & Fırat, M. (April-2012) Trip600 Çeliğinin Kare Kesit Çekilebilirliğinin Sonlu Elemanlar Tahmini. In proceedings of International Iron & Steel Symposium, Karabük, Turkey.
  • Harpell, E. T., Worswick, M. J., Finn, M., Jain, M., & Martin, P. (2000). Numerical prediction of the limiting draw ratio for aluminum alloy sheet. Journal of Materials Processing Technology, 100(1-3), 131-141.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hüseyin Vatansever This is me 0000-0002-1760-0008

Emre Esener 0000-0001-5854-4834

Publication Date August 31, 2019
Published in Issue Year 2019 Issue: 16

Cite

APA Vatansever, H., & Esener, E. (2019). Sonlu Elemanlar Hesaplama Parametrelerinin Sac Metal Şekillendirme Simülasyon Süresi ve Hassasiyetine Etkisinin Tespiti. Avrupa Bilim Ve Teknoloji Dergisi(16), 92-108. https://doi.org/10.31590/ejosat.555491