Research Article
BibTex RIS Cite

Optimization of the Production of Biodiesel from Beef Tallow Applying Ultrasound Technology

Year 2019, Issue: 16, 485 - 493, 31.08.2019

Abstract

Biodiesel is one of the renewable energy sources that can
be produced from vegetable and animal sources. Biodiesel has many advantages
such as being environmentally friendly, non-toxic, low emission profile and
biodegradable. Contrary to its advantages, one of the most important
disadvantages is its high cost.
The cost of
biodiesel increases considerably when it is produced from edible crude oils.
Therefore, a suitable feedstock should be used for biodiesel production. Beef
tallow is an fat that is not preferred much in the food sector and can be
called as waste. When biodiesel is produced from this fat, the contribution
will be made both to the environment and to the economy.
In this work, the optimization of ultrasound assisted biodiesel production from beef
tallow was investigated.
Taguchi
method was used to optimize the biodiesel yield. Catalyst amount (0.75-2 wt.%
of oil), methanol/oil molar ratio (5/1-9/1), reaction time (30-120 min),
ultrasound time (5-20 min), ultrasound power (10-40 W) were selected as
parameters. The optimum conditions were found to be 1.5 wt.% of oil for the c
atalyst amount, 7/1 methanol/oil molar ratio, 40W ultrasound power, 60 minute
reaction time and 10 minute ultrasound time.
The fuel
properties of biodiesel obtained under these conditions accomplished the
requirements of both the EN 14214 and ASTM D
6751
standards.  The biodiesel
yield under optimum conditions was 99.8%. In addition, according to the
ANOVA
results, it is found that the influence of
reaction time, ultrasound time, methanol/oil molar ratio, catalyst amount and ultrasound power on production yield are obtained as
34.56%, 29.72%, 23.68%, 9.18% and 2.17%, respectively.  

Supporting Institution

Ataturk University Scientific Research Project

Project Number

BAP 2016/208

References

  • Adewale, P., Vithanage, L. N., & Christopher, L. (2017). Optimization of enzyme-catalyzed biodiesel production from crude tall oil using Taguchi method. Energy Conversion and Management, 154, 81-91.
  • Akhtar, T., Tariq, M. I., Iqbal, S., Sultana, N., & Wei, C. K. (2017). Production and characterization of biodiesel from Eriobotrya Japonica seed oil: an optimization study. International Journal of Green Energy, 14(6), 569-574.
  • Brasil, A. N., Oliveira, L. S., & Franca, A. S. (2015). Circulation flow reactor with ultrasound irradiation for the transesterification of vegetable oils. Renewable Energy, 83, 1059-1065.
  • da Cunha, M. E., Krause, L. C., Moraes, M. S. A., Faccini, C. S., Jacques, R. A., Almeida, S. R., . . . Caramão, E. B. (2009). Beef tallow biodiesel produced in a pilot scale. Fuel Processing Technology, 90(4), 570-575.
  • Gupta, A. R., Yadav, S. V., & Rathod, V. K. (2015). Enhancement in biodiesel production using waste cooking oil and calcium diglyceroxide as a heterogeneous catalyst in presence of ultrasound. Fuel, 158, 800-806.
  • Hoque, M. E., Singh, A., & Chuan, Y. L. (2011). Biodiesel from low cost feedstocks: the effects of process parameters on the biodiesel yield. Biomass and Bioenergy, 35(4), 1582-1587.
  • Kackar, R. N. (1985). Off-line quality control, parameter design, and the Taguchi method. journal of Quality Technology, 17(4), 176-188.
  • Korkut, I., & Bayramoglu, M. (2016). Ultrasound assisted biodiesel production in presence of dolomite catalyst. Fuel, 180, 624-629.
  • Kumar, N., Mohapatra, S., Ragit, S., Kundu, K., & Karmakar, R. (2017). Optimization of safflower oil transesterification using the Taguchi approach. Petroleum Science, 14(4), 798-805.
  • Kumar, R. S., Sureshkumar, K., & Velraj, R. (2015). Optimization of biodiesel production from Manilkara zapota (L.) seed oil using Taguchi method. Fuel, 140, 90-96.
  • Mahamuni, N. N., & Adewuyi, Y. G. (2010). Application of Taguchi method to investigate the effects of process parameters on the transesterification of soybean oil using high frequency ultrasound. Energy & Fuels, 24(3), 2120-2126.
  • Martinez-Guerra, E., & Gude, V. G. (2015). Continuous and pulse sonication effects on transesterification of used vegetable oil. Energy Conversion and Management, 96, 268-276.
  • Martínez, N., Callejas, N., Morais, E. G., Costa, J. A. V., Jachmanián, I., & Vieitez, I. (2017). Obtaining biodiesel from microalgae oil using ultrasound-assisted in-situ alkaline transesterification. Fuel, 202, 512-519.
  • Mata, T. M., Cardoso, N., Ornelas, M., Neves, S., & Caetano, N. S. (2011). Evaluation of two purification methods of biodiesel from beef tallow, pork lard, and chicken fat. Energy & Fuels, 25(10), 4756-4762.
  • Mohod, A. V., Gogate, P. R., Viel, G., Firmino, P., & Giudici, R. (2017). Intensification of biodiesel production using hydrodynamic cavitation based on high speed homogenizer. Chemical Engineering Journal, 316, 751-757.
  • Nakayama, R. i., Imai, M., & Woodley, J. M. (2017). Ultrasound‐assisted production of biodiesel FAME from rapeseed oil in a novel two‐compartment reactor. Journal of Chemical Technology and Biotechnology, 92(3), 657-665.
  • Parida, S., Sahu, D. K., & Misra, P. K. (2016). A rapid ultrasound-assisted production of biodiesel from a mixture of Karanj and soybean oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(8), 1110-1116.
  • Sáez-Bastante, J., Pinzi, S., Arzamendi, G., De Castro, M. L., Priego-Capote, F., & Dorado, M. (2014). Influence of vegetable oil fatty acid composition on ultrasound-assisted synthesis of biodiesel. Fuel, 125, 183-191.
  • Sajjadi, B., Aziz, A. A., & Ibrahim, S. (2015). Mechanistic analysis of cavitation assisted transesterification on biodiesel characteristics. Ultrasonics sonochemistry, 22, 463-473.
  • Saravanakumar, A., Avinash, A., & Saravanakumar, R. (2016). Optimization of biodiesel production from Pungamia oil by Taguchi’s technique. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(17), 2524-2529.
  • Sasikumar, C., Balamurugan, K., Rajendran, S., & Naveenkumar, S. (2016). Process parameter optimization in jatropha methyl ester yield using taguchi technique. Materials and Manufacturing Processes, 31(6), 701-706.
  • Shinde, K., Nohair, B., & Kaliaguine, S. (2017). A Parametric Study of Biodiesel Production Under Ultrasounds. International Journal of Chemical Reactor Engineering, 15(1).
  • Teixeira, L. S., Assis, J. C., Mendonça, D. R., Santos, I. T., Guimarães, P. R., Pontes, L. A., & Teixeira, J. S. (2009). Comparison between conventional and ultrasonic preparation of beef tallow biodiesel. Fuel Processing Technology, 90(9), 1164-1166.

Ultrases Teknolojisi Uygulayarak Sığır İç Yağından Biyodizel Üretiminin Optimizasyonu

Year 2019, Issue: 16, 485 - 493, 31.08.2019

Abstract

Biyodizel,
bitkisel ve hayvansal kaynaklardan üretilebilen yenilenebilir enerji
kaynaklarından birisidir. Biyodizel, çevre dostu olması, toksik olmaması, düşük
emisyon profiline sahip olması ve biyolojik olarak bozunabilir olması gibi pek
çok avantaja sahiptir. Onun bu avantajlarının aksine en önemli dezavantajlarından
birisi yüksek maliyetli oluşudur. Biyodizelin maliyeti, yemeklik ham yağlardan
üretildiğinde önemli ölçüde artar. Bu nedenle, biyodizel üretimi için uygun bir
hammadde kullanılmalıdır. Sığır iç yağı, gıda sektöründe fazla tercih edilmeyen
bir yağdır ve atık olarak adlandırılabilir. Bu yağdan biyodizel üretildiğinde,
hem çevreye hem de ekonomiye katkı sağlanacaktır. Bu çalışmada sığır iç yağından,
ultrases destekli biyodizel üretiminin optimizasyonu araştırıldı. Biyodizel
verimini optimize etmek için Taguchi yöntemi kullanıldı. Katalizör miktarı (ağırlıkça
% 0.75-2), metanol/yağ molar oranı (5/1-9/1), reaksiyon süresi (30-120 dk),
ultrases süresi (5-20 dk), ultrases gücü (10-40 W) parametre olarak seçildi.
Optimum koşullar % 1.5 (ağırlıkça) katalizör miktarı, metanol/yağ oranı 7/1,
ultrases gücü 40 W, reaksiyon süresi 60 dk ve ultrases süresi 10 dk olarak
bulundu. Bu koşullar altında elde edilen biyodizelin yakıt özellikleri, hem EN
14214 hem de ASTM D 6751 standartlarının gerekliliklerini yerine getirmiştir.
Optimum koşullar altında biyodizel verimi % 99.8 dir. Ayrıca, ANOVA sonuçlarına
göre, ürün verimi üzerine reaksiyon süresi, ultrases süresi, metanol / yağ molar
oranı, katalizör miktarı ve ultrases gücünün etkisinin sırasıyla % 34,56, %
29,72, % 23,68, % 9,18 ve % 2,17 olduğu bulunmuştur.

Project Number

BAP 2016/208

References

  • Adewale, P., Vithanage, L. N., & Christopher, L. (2017). Optimization of enzyme-catalyzed biodiesel production from crude tall oil using Taguchi method. Energy Conversion and Management, 154, 81-91.
  • Akhtar, T., Tariq, M. I., Iqbal, S., Sultana, N., & Wei, C. K. (2017). Production and characterization of biodiesel from Eriobotrya Japonica seed oil: an optimization study. International Journal of Green Energy, 14(6), 569-574.
  • Brasil, A. N., Oliveira, L. S., & Franca, A. S. (2015). Circulation flow reactor with ultrasound irradiation for the transesterification of vegetable oils. Renewable Energy, 83, 1059-1065.
  • da Cunha, M. E., Krause, L. C., Moraes, M. S. A., Faccini, C. S., Jacques, R. A., Almeida, S. R., . . . Caramão, E. B. (2009). Beef tallow biodiesel produced in a pilot scale. Fuel Processing Technology, 90(4), 570-575.
  • Gupta, A. R., Yadav, S. V., & Rathod, V. K. (2015). Enhancement in biodiesel production using waste cooking oil and calcium diglyceroxide as a heterogeneous catalyst in presence of ultrasound. Fuel, 158, 800-806.
  • Hoque, M. E., Singh, A., & Chuan, Y. L. (2011). Biodiesel from low cost feedstocks: the effects of process parameters on the biodiesel yield. Biomass and Bioenergy, 35(4), 1582-1587.
  • Kackar, R. N. (1985). Off-line quality control, parameter design, and the Taguchi method. journal of Quality Technology, 17(4), 176-188.
  • Korkut, I., & Bayramoglu, M. (2016). Ultrasound assisted biodiesel production in presence of dolomite catalyst. Fuel, 180, 624-629.
  • Kumar, N., Mohapatra, S., Ragit, S., Kundu, K., & Karmakar, R. (2017). Optimization of safflower oil transesterification using the Taguchi approach. Petroleum Science, 14(4), 798-805.
  • Kumar, R. S., Sureshkumar, K., & Velraj, R. (2015). Optimization of biodiesel production from Manilkara zapota (L.) seed oil using Taguchi method. Fuel, 140, 90-96.
  • Mahamuni, N. N., & Adewuyi, Y. G. (2010). Application of Taguchi method to investigate the effects of process parameters on the transesterification of soybean oil using high frequency ultrasound. Energy & Fuels, 24(3), 2120-2126.
  • Martinez-Guerra, E., & Gude, V. G. (2015). Continuous and pulse sonication effects on transesterification of used vegetable oil. Energy Conversion and Management, 96, 268-276.
  • Martínez, N., Callejas, N., Morais, E. G., Costa, J. A. V., Jachmanián, I., & Vieitez, I. (2017). Obtaining biodiesel from microalgae oil using ultrasound-assisted in-situ alkaline transesterification. Fuel, 202, 512-519.
  • Mata, T. M., Cardoso, N., Ornelas, M., Neves, S., & Caetano, N. S. (2011). Evaluation of two purification methods of biodiesel from beef tallow, pork lard, and chicken fat. Energy & Fuels, 25(10), 4756-4762.
  • Mohod, A. V., Gogate, P. R., Viel, G., Firmino, P., & Giudici, R. (2017). Intensification of biodiesel production using hydrodynamic cavitation based on high speed homogenizer. Chemical Engineering Journal, 316, 751-757.
  • Nakayama, R. i., Imai, M., & Woodley, J. M. (2017). Ultrasound‐assisted production of biodiesel FAME from rapeseed oil in a novel two‐compartment reactor. Journal of Chemical Technology and Biotechnology, 92(3), 657-665.
  • Parida, S., Sahu, D. K., & Misra, P. K. (2016). A rapid ultrasound-assisted production of biodiesel from a mixture of Karanj and soybean oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(8), 1110-1116.
  • Sáez-Bastante, J., Pinzi, S., Arzamendi, G., De Castro, M. L., Priego-Capote, F., & Dorado, M. (2014). Influence of vegetable oil fatty acid composition on ultrasound-assisted synthesis of biodiesel. Fuel, 125, 183-191.
  • Sajjadi, B., Aziz, A. A., & Ibrahim, S. (2015). Mechanistic analysis of cavitation assisted transesterification on biodiesel characteristics. Ultrasonics sonochemistry, 22, 463-473.
  • Saravanakumar, A., Avinash, A., & Saravanakumar, R. (2016). Optimization of biodiesel production from Pungamia oil by Taguchi’s technique. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(17), 2524-2529.
  • Sasikumar, C., Balamurugan, K., Rajendran, S., & Naveenkumar, S. (2016). Process parameter optimization in jatropha methyl ester yield using taguchi technique. Materials and Manufacturing Processes, 31(6), 701-706.
  • Shinde, K., Nohair, B., & Kaliaguine, S. (2017). A Parametric Study of Biodiesel Production Under Ultrasounds. International Journal of Chemical Reactor Engineering, 15(1).
  • Teixeira, L. S., Assis, J. C., Mendonça, D. R., Santos, I. T., Guimarães, P. R., Pontes, L. A., & Teixeira, J. S. (2009). Comparison between conventional and ultrasonic preparation of beef tallow biodiesel. Fuel Processing Technology, 90(9), 1164-1166.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Tuba Hatice Doğan 0000-0001-8369-9416

Özlem Karagöz

Project Number BAP 2016/208
Publication Date August 31, 2019
Published in Issue Year 2019 Issue: 16

Cite

APA Doğan, T. H., & Karagöz, Ö. (2019). Optimization of the Production of Biodiesel from Beef Tallow Applying Ultrasound Technology. Avrupa Bilim Ve Teknoloji Dergisi(16), 485-493.