Research Article
BibTex RIS Cite

Double Quadrature Spatial Intensity Modulation for Visible Light Communications

Year 2019, Issue: 16, 905 - 914, 31.08.2019
https://doi.org/10.31590/ejosat.582283

Abstract

In
this paper, a new spectrally efficient space modulation technique, which is
called double quadrature spatial intensity modulation (DQSIM), is proposed for
multiple-input multiple-output (MIMO) visible light communication (VLC)
systems. Sub-carrier intensity modulation (SIM), which ensures the use of in-phase/quadrature
(I/Q) signals in intensity modulation direct detection (IM/DD) systems, is used
as a digital modulation scheme. In RF, quadrature spatial modulation (QSM)
transmits the I/Q signals through single or multiple antennas selected independently
from each other. Furthermore, the orthogonality between I and Q components is provided
for the half period of sinusoids. DQSIM utilizes these two features and
transmits four fold more bits than spatial modulation (SM) via spatial
constellation. SIM uses two-fold bandwidth compared to on-off keying (OOK),
while DQSIM uses three fold.
DQSIM
outperforms benchmark modulation schemes, which are SIM-SM and PAM-SM, at the
BER value of 10-4. Furthermore, DQSIM performance has increased with
increasing number of LEDs.

References

  • Khan, L.U. 2017. Visible light communication: Applications, architecture, standardization and research challenges, Digital Communications and Networks, 3, 2, pp. 78-88. https://doi.org/10.1016/j.dcan.2016.07.004
  • Jovicic, A. Li, J. and Richardson, T. 2013. Visible light communication: Opportunities, challenges and the path to market IEEE Commun. Mag. 51, 12, pp. 26-32. https://doi.org/10.1109/MCOM.2013.6685754
  • Dimitrov, S. and Haas, H. 2015. Principles of LED Light Communications, Cambridge University Press, Cambridge, UK.
  • Armstrong, J. 2009. OFDM for Optical Communications, IEEE Journal of Lightwave Tech., 27, 3, pp. 189-204. https://doi.org/10.1109/JLT.2008.2010061
  • Barry, J. R. 1994. Wireless Infrared Communications, Norwell, MA Kluwer.
  • Islim, M. S. and Haas, H. 2016. Modulation Techniques for Li-Fi, ZTE Communications, 14, 2, pp. 29-40. https://www.research.ed.ac.uk/portal/en/publications/modulation-techniques-for-lifi
  • Celik, Y. and Akan, A. 2018. Subcarrier intensity modulation for MIMO visible light communications, Optics Communications, 412, pp. 90-101. https://doi.org/10.1016/j.optcom.2017.12.002
  • Zeng, L. and et al. 2009. High Data Rate Multiple Input Multiple Output (MIMO) Optical Wireless Communications Using White LED Lighting, IEEE Journal on Selected Areas in Comm., 27, 9, pp. 1654-1662. https://doi.org/10.1109/ JSAC.2009.091215
  • Mesleh, R. and et al. 2011. Optical Spatial Modulation, IEEE/OSA Journal of Optical Communications and Networking, 3, 3, pp. 234-244. https://doi.org/10.1364/ JOCN.3.000234
  • Fath, T. and Haas, H. 2013. Performance comparison of MIMO techniques for optical wireless communications in indoor environments, IEEE Transactions on Communications, 61, 2, pp. 733–742. https://doi.org/10.1109/ TCOMM.2012.120512.110578
  • Mesleh, R. and et. al. 2008. Spatial modulation, IEEE Trans. Veh. Technol., 57, 4, pp. 2228-2241. https://doi.org/10.1109/TVT.2007.912136
  • Mesleh, R., Ikki, S., and Aggoune H. 2015. Quadrature spatial modulation, IEEE Trans. Veh. Technol., 64, 6, pp. 2738-2742. https://doi.org/10.1109/TVT.2014.2344036
  • Mesleh, R. and Alhassi, A. 2018. Space Modulation Techniques, Wiley, 1th Ed., Hoboken, USA.
  • Nuwanpriya, A. and et al. 2015. Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users, IEEE Journal on Selected Areas in Communications, 33, 9, pp. 1780-1792.
  • You, R. and Kahn, J. M. 2001. Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals, IEEE Transactions on Communications, 49, 12, pp. 2164-2171. https://doi.org/10.1109/26.974263
  • Y. Qiu and et al., 2018. Visible Light Communications Based on CDMA Technology, IEEE Wireless Communications, 25, 2, pp. 178-185.
  • A. Younis and et al., 2010. Generalized spatial modulation, Conf. Rec. Asilomar Conf. Signals, Syst., Comput., pp. 1498-1502, Pacific Grove, CA, USA.

Görünür Işık Haberleşmesi için Çift Dördün Uzaysal Yoğunluk Modülasyonu

Year 2019, Issue: 16, 905 - 914, 31.08.2019
https://doi.org/10.31590/ejosat.582283

Abstract

Bu çalışmada, çift dördün uzaysal modülasyon (ÇDUM) adı verilen izgesel
verimi yüksek yeni bir uzaysal modülasyon tekniği çoklu-giriş çoklu-çıkış
(ÇGÇÇ) görünür ışık haberleşmesi (GIH) sistemleri için önerilmiştir. Sayısal
modülasyon planı olarak, eş evreli (I) ve dördün (Q) sinyallerin yoğunluk
modülasyonlu direk sezim (YM/DD) sistemlerde kullanımına olanak sağlayan,
alt-taşıyıcılı yoğunluk modülasyonu (AYM) kullanılmıştır. Radyo frekans (RF)
haberleşmesinde dördün uzamsal modülasyon (DUM) I/Q sinyallerini her biri
diğerinden bağımsız olarak seçilmiş antenlerden iletir. Dahası I/Q sinyalleri
arasındaki diklik sinüzoidal sinyallerin yarım periyodunda da korunmaktadır.
ÇDUM bu iki özelliği kullanarak uzamsal modülasyonun (UM) dört katı biti uzaysal
boyutta iletir. AYM, aç-kapa anahtarlamaya (AKA) kıyasla iki kat bant genişliği
kullanırken, ÇDUM üç kat kullanır. Bu çalışmada ÇDUM performansı AYM-UM ve darbe
genlik modülasyonlu uzaysal modülasyon (DGM-UM) ile karşılaştırılmış ve daha
iyi bir performans sergilediği gösterilmiştir. Ek olarak, verici taraftaki LED
sayısı arttıkça ÇDUM performansı artmaktadır.

References

  • Khan, L.U. 2017. Visible light communication: Applications, architecture, standardization and research challenges, Digital Communications and Networks, 3, 2, pp. 78-88. https://doi.org/10.1016/j.dcan.2016.07.004
  • Jovicic, A. Li, J. and Richardson, T. 2013. Visible light communication: Opportunities, challenges and the path to market IEEE Commun. Mag. 51, 12, pp. 26-32. https://doi.org/10.1109/MCOM.2013.6685754
  • Dimitrov, S. and Haas, H. 2015. Principles of LED Light Communications, Cambridge University Press, Cambridge, UK.
  • Armstrong, J. 2009. OFDM for Optical Communications, IEEE Journal of Lightwave Tech., 27, 3, pp. 189-204. https://doi.org/10.1109/JLT.2008.2010061
  • Barry, J. R. 1994. Wireless Infrared Communications, Norwell, MA Kluwer.
  • Islim, M. S. and Haas, H. 2016. Modulation Techniques for Li-Fi, ZTE Communications, 14, 2, pp. 29-40. https://www.research.ed.ac.uk/portal/en/publications/modulation-techniques-for-lifi
  • Celik, Y. and Akan, A. 2018. Subcarrier intensity modulation for MIMO visible light communications, Optics Communications, 412, pp. 90-101. https://doi.org/10.1016/j.optcom.2017.12.002
  • Zeng, L. and et al. 2009. High Data Rate Multiple Input Multiple Output (MIMO) Optical Wireless Communications Using White LED Lighting, IEEE Journal on Selected Areas in Comm., 27, 9, pp. 1654-1662. https://doi.org/10.1109/ JSAC.2009.091215
  • Mesleh, R. and et al. 2011. Optical Spatial Modulation, IEEE/OSA Journal of Optical Communications and Networking, 3, 3, pp. 234-244. https://doi.org/10.1364/ JOCN.3.000234
  • Fath, T. and Haas, H. 2013. Performance comparison of MIMO techniques for optical wireless communications in indoor environments, IEEE Transactions on Communications, 61, 2, pp. 733–742. https://doi.org/10.1109/ TCOMM.2012.120512.110578
  • Mesleh, R. and et. al. 2008. Spatial modulation, IEEE Trans. Veh. Technol., 57, 4, pp. 2228-2241. https://doi.org/10.1109/TVT.2007.912136
  • Mesleh, R., Ikki, S., and Aggoune H. 2015. Quadrature spatial modulation, IEEE Trans. Veh. Technol., 64, 6, pp. 2738-2742. https://doi.org/10.1109/TVT.2014.2344036
  • Mesleh, R. and Alhassi, A. 2018. Space Modulation Techniques, Wiley, 1th Ed., Hoboken, USA.
  • Nuwanpriya, A. and et al. 2015. Indoor MIMO visible light communications: Novel angle diversity receivers for mobile users, IEEE Journal on Selected Areas in Communications, 33, 9, pp. 1780-1792.
  • You, R. and Kahn, J. M. 2001. Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals, IEEE Transactions on Communications, 49, 12, pp. 2164-2171. https://doi.org/10.1109/26.974263
  • Y. Qiu and et al., 2018. Visible Light Communications Based on CDMA Technology, IEEE Wireless Communications, 25, 2, pp. 178-185.
  • A. Younis and et al., 2010. Generalized spatial modulation, Conf. Rec. Asilomar Conf. Signals, Syst., Comput., pp. 1498-1502, Pacific Grove, CA, USA.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Yasin Çelik 0000-0001-8972-9970

Publication Date August 31, 2019
Published in Issue Year 2019 Issue: 16

Cite

APA Çelik, Y. (2019). Double Quadrature Spatial Intensity Modulation for Visible Light Communications. Avrupa Bilim Ve Teknoloji Dergisi(16), 905-914. https://doi.org/10.31590/ejosat.582283