Research Article
BibTex RIS Cite

Investigation the Usage of Pleurotus ostreatus Biomass in Cr(VI) Biosorption from Aqueous Solutions

Year 2019, Issue: 17, 1173 - 1183, 31.12.2019
https://doi.org/10.31590/ejosat.656319

Abstract

In this work, an edible mushroom Pleurotus ostreatus was used as a biosorbent for biosorption of Cr(VI) ions from aqueous solutions. First of all, cultivation of P. ostreatus was achieved and harvested after reaching optimum maturity. Then to determine the optimum conditions pH, temperature, contact time and initial ion concentration were investigated. To clarify the biosorption process some physicochemical parameters were examined and reported as biosorption process was fitted Freundlich isotherm model. In addition, the thermodynamic parameters were determined to explain biosorption mechanism.

References

  • Aid A, Amokrane S, Nibou D, Mekatel E, Trari M, Hulea V. 2018. Modeling biosorption of Cr(VI) onto Ulva compressa L. from aqueous solutions. Water Science and Technology, 77(1): 60-69.
  • Akar T, Kaynak Z, Ulusoy S, Yuvaci D, Ozsari G, Akar ST, 2009. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: Biosorption characteristics in batch and dynamic flow mode. Journal of Hazardous Materials, 163 (2-3): 1134-1141.
  • Albadarin AB, Solomon S, Kurniawan TA, Mangwandi C, Walker G. 2017. Single, simultaneous and consecutive biosorption of Cr(VI) and Orange II onto chemically modified masau stones. Journal of Environmental Managment, 204(1): 365-374.
  • Altun T, 2019. Chitosan-coated sour cherry kernel Shell beads: an adsorbent for removal of Cr(VI) from acidic solutions. Journal of Analytical Science and Technology, 10 (14): 1-10.
  • Arbanah M, Miradatul NMR, Halim KKH, 2013. Utilization of Pleurotus ostreatus in the removal of Cr(VI) from chemical laboratory waste. Int Refreed Journal of Engineering Science, 2: 29-39.
  • Bayramoğlu G ve Arıca MY, 2008. Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chemical Engineering Journal, 143: 133-140.
  • Bhanoori M ve Venkateswerlu G, 2000. In vivo chitin-cadmium complexation in cell wall of Neurospora crassa. Biochimica et Biophysica Acta (BBA)-General Subjects, 1523 (1): 21-28.
  • Bharagava RN ve Mishra S, 2018. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety, 147: 102-109.
  • Chen G, Zeng G, Tang L, Du C, Jiang X, Huang G, Liu H, Shen G, 2008. Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresource Technology, 99 (15): 7034-7040.
  • Chojnacka K, 2010. Biosorption and bioaccumulation-the prospects for practical applications. Environment International, 36: 299-307.
  • Da Rocha Ferreira GL, Vendruscolo F, Filho NRA, 2019. Biosorption of hexavalent chromium by Pleurotus ostreatus. Heliyon, 5 (3): e01450.
  • De Rossi A, Rigon MR, Zaparoli M, Braido RD, Colla LM, Dotto GL, Piccin JS, 2018. Chromium(VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environmental Science and Pollution Research, 25 (19): 19179-19186.
  • Ertugay N ve Bayhan YK, 2008. Biosorption of Cr(VI) from aqueous solutions by biomass of Agaricus bisporus. Journal of Hazardous Materials, 154: 432-439.
  • Fereidouni M, Daneshi A, Younesi H, 2009. Biosorption equilibria of binaary Cd(II) and Ni(II) systems onto Saccharomyces cerevisiae and Ralstonia eutropha cells: application of response surface methodology. Journal of Hazardous Materials, 168 (2-3): 1437-1448.
  • Fernandez PM, Farina JI, Figueroa LIC, 2010. The significance of inoculum standardization and cell density on the Cr(VI) bioremediation by environmental yeast isolates. Water, Air, Soil Pollution, 212: 275-279.
  • Fernandez PM, Vinarta SC, Bernal AR, Cruz EL, Figueroa LIC, 2018. Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere, 208: 139-148.
  • Foo KY ve Hameed BH, 2010. Insights into the modelling of adsorption isotherm systems. Chemical Engineering Journal, 156 (1): 2-10.
  • Freundlich H, 1906. Over the adsorption in solution. The Journal of Physical Chemistry, 57: 385.
  • Gan L, Zhou F, Owens G, Chen Z, 2018. Burkholderia cepacia immobilized on eucalyptus leaves used to simultaneously remove malachite green (MG) and Cr(VI). Colloids and Surfaces B: Biointerfaces, 172 (1): 526-531.
  • Ghaneian MT, Bhatnagar A, Ehrampoush MH, Amrollahi M, Jamshidi B, Dehvari M, Taghavi M. 2017. Biosorption of hexavalent chromium from aqueous solution onto pomegranate seeds: kinetic modeling studies. International Journal of Environmental Science and Technology, 14(2): 331-340.
  • Gogoi S, Chakraborty S, Saikia MD, 2018. Surface modified pineapple crown leaf for adsorption of Cr(VI) and Cr(III) ions from aqueous solution. Journal of Environmental Chemical Engineering, 6 (2): 2492-2501.
  • Göçenoğlu Sarıkaya A, 2019. Kinetic and thermodynamic studies of the biosorption of Cr (VI) in aqueous solutions by Agaricus campestris. Environmental Technology, DOI: 10.1080/09593330.2019.1620867
  • Hameed BH, Ahmad AL, Latiff KNA, 2007. Adsorption of basic sye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, 75: 143-149.
  • Hlihor RM, Figueiredo H, Tavares T, Gavrilescu M. 2017. Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): Batch and column studies, Process Safety and Environmental Protection, 108: 44-56.
  • Indhumathi P, Syed Shabudeen PS, Shoba US, Saraswathy CP, 2014. The removal of chromium from aqueous solution by using green micro algae. Journal of Chemical and Pharmaceutical Research, 6 (6): 799-808.
  • Joo JH, Hassan SHA, Oh SE, 2010. Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. International Biodeterioration & Biodegradation, 64 (8): 734-741.
  • Kumbasar RA, 2008. Selective separation of chromium(VI) from acidic solutions containing various metal ions through emulsion liquid membrane using trioctylamine as extractant. Separation and Purification Technology, 64 (1): 56-62.
  • Langmuir I, 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40: 1361-1403.
  • Li LL, Feng XQ, Han RP, Zang SQ, Yang G, 2017. Cr(VI) removal via anion Exchange on a silver-triazolate MOF. Journal of Hazardous Materials, 321: 622-628.
  • Lin C, Luo W, Luo T, Zhou Q, Li H, Jing L, 2018. A study on adsorption of Cr(VI) by modified rice straw: Characteristics, performances and mechanism. Journal of Cleaner Production, 196: 626-634.
  • Lotlikar NP, Damare SR, Meena RM, Linsy P, Mascarenhas B, 2018. Potential of marine-derived fungi to remove hexavalent chromium pollutant from culture broth. Indian Journal of Microbiology, 58 (2): 1982-192.
  • Lu D, Yang M, Fang P, Li C, Jiang L, 2017. Enhanced photocatalytic degradation of aqueous phenol and Cr(VI) over visible-light-driven TbxOy loaded TiO2-oriented nanosheets. Applied Surface Science, 399: 167-184.
  • Malkoç E, Nuhoğlu Y, Abalı Y, 2006, Cr(VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: Prediction of breakthrough curves. Chemical Engineering Journal, 119: 61-68.
  • Miyah Y, Lahrichi A, Idrissi M, Khalil A, Zerrouq F, 2018. Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: equilibrium and kinetic studies. Surfaces and Interfaces, 11: 74-81.
  • Mondal NK, Samanta A, Dutta S, Chattoraj S, 2017. Optimization of Cr(VI) biosorption onto Aspergillus niger using 3-level Box-Behnken design: Equilibrium, kinetic, thermodynamic and regeneration studies. Journal of Genetic Engineering and Biotechnology, 15: 151-160.
  • Noormohamadi HR, Fat’hi MR, Ghaedi M, Ghezelbash GR, 2019. Potentiality of White-rot fungi in biosorption of nickel and cadmium: Modeling optimization and kinetics study. Chemosphere, 216: 124-130.
  • Özüdoğru Y ve Merdivan M, 2017. Metilen mavisinin modifiye edilmiş Cystoseira barbata (stackhouse) c. agardh kullanılarak biyosorpsiyonu. Trakya Üniversity Journal of Natural Science, 18 (2): 81-87.
  • Pradhan D, Sukla LB, Mishra BB, Devi N. 2019. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp., Journal of Cleaner Production, 209: 617-629.
  • Rangabhashiyam S ve Selvaraju N. 2015. Evaluation of the biosorption potential of a novel Caryota urens inflorescence waste biomass fort he removal of hexavalent chromium from aqueous solutions. Journal of Taiwan Institute of Chemical Engineers, 47: 59-70.
  • Rangabhashiyam S, Suganya E, Lity AV, Selvaraju N. 2016. Equilibrium and kinetics studies of hexavalent chromium biosorption on a novel green macroalgae Enteromorpha sp.. research on Chemical Intermediates, 42(2): 1275-1294.
  • Romero-Gonzalez J, Peralta-Videa JR, Rodriguez E, Ramirez SL, Gardea-Torresdey JL, 2005. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. The Journal of Chemical Thermodynamics, 37 (4): 343-347.
  • Sanchez C, 2009. Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85(5): 1321-1337.
  • Sanghi R, Sankararamakrishnan N, Dave, BC, 2009. Fungal bioremediation of chromates: conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions. Journal of Hazardous Materials, 169: 1074-1080.
  • Semerjian L, 2018. Removal of heavy metals (Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sawdust: equilibrium, kinetic, and thermodynamic studies. Environmental Technology&Innovation, 12: 91-103.
  • Sethy TR ve Sahoo PK, 2019. Highly toxic Cr(VI) adsorption by (chitosan-g-PMMA)/silica bionanocomposite prepared via emulsifier-free emulsion polymerisation. International Journal of Biological Macromolecules, 122: 1184-1190.
  • Shafey EI, 2005. Behaviour of reduction-sorption of chromium(VI) from an aqueous solution on a modified sorbent from rice husk. Water, Air, & Soil Pollution, 163: 81-102.
  • Sivakumar D, Shankar D, Kandaswamy AN, Ammaiappan M, 2014. Role of electro-dialysis and electro-dialysis cum adsorption for chromium(VI) reduction. Pollution Research, 33 (3): 547-552.
  • Srivastava S, Agrawal SB, Mondal MK. 2015. Biosorption isotherms and kinetics on removal of Cr(VI) using native and chemically modified Lagerstroemia speciosa bark. Ecological Engineering, 85: 56-66.
  • Sugashini S ve Begum KMMS, 2013. Column adsorption studies fort he removal of Cr(VI) ions by ethylamine modified chitosan carbonized rice husk composite beads with modelling and optimization. Journal of Chemistry, 2013: 1-11.
  • Tekerlekopoulou AG, Tsiflikiotou M, Akritidou L, Viennas A, Tsiamis G, Pavlou S, Bourtzis K, Vayenas DV, 2013. Modelling of biological Cr(VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems. Water Research, 47: 623-639.
  • Wang PC, Mori T, Komori K, Sasatsu M, Toda H, Ohtake H, 1989. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Applied and Environmental Microbiology, 55: 1665-1669.
  • Xie B, Shan C, Xu Z, Li X, Zhang X, Chen J, Pan B, 2017. One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation. Chemical Engineering Journal, 308: 791-797.
  • Xu X, Zhang Z, Huang Q, Chen W, 2018. Biosorption performance of multimetal resistant fungus Penicillium chrysogenum XJ-1 for removal of Cu2+ and Cr6+ from aqueous solutions. Geomicrobiology Journal, 35 (1):
  • Yacou C, Altenor S, Carene B, Gaspard S, 2018. Chemical structure investigation of tropical Turbinaria turbinata seaweeds and its derived carbon sorbents applied for the removal of hexavalent chromium in water. Algal Research, 34: 25-36.
  • Zhou J, Wang Y, Wang J, Qiao W, Long D, Ling L, 2016. Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon microspheres. Journal of Colloid and Interface Science, 462: 200-207.

Sulu Çözeltilerden Cr(VI)’nın Biyosorpsiyonunda Pleurotus ostreatus’un Biyokütle Olarak Kullanımının Araştırılması

Year 2019, Issue: 17, 1173 - 1183, 31.12.2019
https://doi.org/10.31590/ejosat.656319

Abstract

Bu çalışmada yenilebilir bir mantar türü olan Pleurotus ostreatus’un, sulu çözeltilerden Cr(VI) iyonlarının biyosorpsiyonu için biyosorbent olarak kullanılabilirliği araştırılmıştır. Öncelikle P. ostreatus’un kütük üzerinde kültivasyonu gerçekleştirilmiş, uygun olgunluğa eriştikten sonra hasat edilmiştir. Daha sonra uygun çalışma koşullarının belirlenebilmesi için biyosorpsiyona pH, sıcaklık, süre ve iyon derişiminin etkisi incelenmiştir. Biyosorpsiyonun doğasının aydınlatılabilmesi bazı fizikokimyasal parametreler incelenerek, biyosorpsiyonun Freundlich izoterm modeline uyduğu rapor edilmiştir. Son olarak biyosorpsiyon mekanizması için termodinamik parametreler belirlenmiştir.

References

  • Aid A, Amokrane S, Nibou D, Mekatel E, Trari M, Hulea V. 2018. Modeling biosorption of Cr(VI) onto Ulva compressa L. from aqueous solutions. Water Science and Technology, 77(1): 60-69.
  • Akar T, Kaynak Z, Ulusoy S, Yuvaci D, Ozsari G, Akar ST, 2009. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: Biosorption characteristics in batch and dynamic flow mode. Journal of Hazardous Materials, 163 (2-3): 1134-1141.
  • Albadarin AB, Solomon S, Kurniawan TA, Mangwandi C, Walker G. 2017. Single, simultaneous and consecutive biosorption of Cr(VI) and Orange II onto chemically modified masau stones. Journal of Environmental Managment, 204(1): 365-374.
  • Altun T, 2019. Chitosan-coated sour cherry kernel Shell beads: an adsorbent for removal of Cr(VI) from acidic solutions. Journal of Analytical Science and Technology, 10 (14): 1-10.
  • Arbanah M, Miradatul NMR, Halim KKH, 2013. Utilization of Pleurotus ostreatus in the removal of Cr(VI) from chemical laboratory waste. Int Refreed Journal of Engineering Science, 2: 29-39.
  • Bayramoğlu G ve Arıca MY, 2008. Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chemical Engineering Journal, 143: 133-140.
  • Bhanoori M ve Venkateswerlu G, 2000. In vivo chitin-cadmium complexation in cell wall of Neurospora crassa. Biochimica et Biophysica Acta (BBA)-General Subjects, 1523 (1): 21-28.
  • Bharagava RN ve Mishra S, 2018. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety, 147: 102-109.
  • Chen G, Zeng G, Tang L, Du C, Jiang X, Huang G, Liu H, Shen G, 2008. Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresource Technology, 99 (15): 7034-7040.
  • Chojnacka K, 2010. Biosorption and bioaccumulation-the prospects for practical applications. Environment International, 36: 299-307.
  • Da Rocha Ferreira GL, Vendruscolo F, Filho NRA, 2019. Biosorption of hexavalent chromium by Pleurotus ostreatus. Heliyon, 5 (3): e01450.
  • De Rossi A, Rigon MR, Zaparoli M, Braido RD, Colla LM, Dotto GL, Piccin JS, 2018. Chromium(VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environmental Science and Pollution Research, 25 (19): 19179-19186.
  • Ertugay N ve Bayhan YK, 2008. Biosorption of Cr(VI) from aqueous solutions by biomass of Agaricus bisporus. Journal of Hazardous Materials, 154: 432-439.
  • Fereidouni M, Daneshi A, Younesi H, 2009. Biosorption equilibria of binaary Cd(II) and Ni(II) systems onto Saccharomyces cerevisiae and Ralstonia eutropha cells: application of response surface methodology. Journal of Hazardous Materials, 168 (2-3): 1437-1448.
  • Fernandez PM, Farina JI, Figueroa LIC, 2010. The significance of inoculum standardization and cell density on the Cr(VI) bioremediation by environmental yeast isolates. Water, Air, Soil Pollution, 212: 275-279.
  • Fernandez PM, Vinarta SC, Bernal AR, Cruz EL, Figueroa LIC, 2018. Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere, 208: 139-148.
  • Foo KY ve Hameed BH, 2010. Insights into the modelling of adsorption isotherm systems. Chemical Engineering Journal, 156 (1): 2-10.
  • Freundlich H, 1906. Over the adsorption in solution. The Journal of Physical Chemistry, 57: 385.
  • Gan L, Zhou F, Owens G, Chen Z, 2018. Burkholderia cepacia immobilized on eucalyptus leaves used to simultaneously remove malachite green (MG) and Cr(VI). Colloids and Surfaces B: Biointerfaces, 172 (1): 526-531.
  • Ghaneian MT, Bhatnagar A, Ehrampoush MH, Amrollahi M, Jamshidi B, Dehvari M, Taghavi M. 2017. Biosorption of hexavalent chromium from aqueous solution onto pomegranate seeds: kinetic modeling studies. International Journal of Environmental Science and Technology, 14(2): 331-340.
  • Gogoi S, Chakraborty S, Saikia MD, 2018. Surface modified pineapple crown leaf for adsorption of Cr(VI) and Cr(III) ions from aqueous solution. Journal of Environmental Chemical Engineering, 6 (2): 2492-2501.
  • Göçenoğlu Sarıkaya A, 2019. Kinetic and thermodynamic studies of the biosorption of Cr (VI) in aqueous solutions by Agaricus campestris. Environmental Technology, DOI: 10.1080/09593330.2019.1620867
  • Hameed BH, Ahmad AL, Latiff KNA, 2007. Adsorption of basic sye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, 75: 143-149.
  • Hlihor RM, Figueiredo H, Tavares T, Gavrilescu M. 2017. Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): Batch and column studies, Process Safety and Environmental Protection, 108: 44-56.
  • Indhumathi P, Syed Shabudeen PS, Shoba US, Saraswathy CP, 2014. The removal of chromium from aqueous solution by using green micro algae. Journal of Chemical and Pharmaceutical Research, 6 (6): 799-808.
  • Joo JH, Hassan SHA, Oh SE, 2010. Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. International Biodeterioration & Biodegradation, 64 (8): 734-741.
  • Kumbasar RA, 2008. Selective separation of chromium(VI) from acidic solutions containing various metal ions through emulsion liquid membrane using trioctylamine as extractant. Separation and Purification Technology, 64 (1): 56-62.
  • Langmuir I, 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40: 1361-1403.
  • Li LL, Feng XQ, Han RP, Zang SQ, Yang G, 2017. Cr(VI) removal via anion Exchange on a silver-triazolate MOF. Journal of Hazardous Materials, 321: 622-628.
  • Lin C, Luo W, Luo T, Zhou Q, Li H, Jing L, 2018. A study on adsorption of Cr(VI) by modified rice straw: Characteristics, performances and mechanism. Journal of Cleaner Production, 196: 626-634.
  • Lotlikar NP, Damare SR, Meena RM, Linsy P, Mascarenhas B, 2018. Potential of marine-derived fungi to remove hexavalent chromium pollutant from culture broth. Indian Journal of Microbiology, 58 (2): 1982-192.
  • Lu D, Yang M, Fang P, Li C, Jiang L, 2017. Enhanced photocatalytic degradation of aqueous phenol and Cr(VI) over visible-light-driven TbxOy loaded TiO2-oriented nanosheets. Applied Surface Science, 399: 167-184.
  • Malkoç E, Nuhoğlu Y, Abalı Y, 2006, Cr(VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: Prediction of breakthrough curves. Chemical Engineering Journal, 119: 61-68.
  • Miyah Y, Lahrichi A, Idrissi M, Khalil A, Zerrouq F, 2018. Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: equilibrium and kinetic studies. Surfaces and Interfaces, 11: 74-81.
  • Mondal NK, Samanta A, Dutta S, Chattoraj S, 2017. Optimization of Cr(VI) biosorption onto Aspergillus niger using 3-level Box-Behnken design: Equilibrium, kinetic, thermodynamic and regeneration studies. Journal of Genetic Engineering and Biotechnology, 15: 151-160.
  • Noormohamadi HR, Fat’hi MR, Ghaedi M, Ghezelbash GR, 2019. Potentiality of White-rot fungi in biosorption of nickel and cadmium: Modeling optimization and kinetics study. Chemosphere, 216: 124-130.
  • Özüdoğru Y ve Merdivan M, 2017. Metilen mavisinin modifiye edilmiş Cystoseira barbata (stackhouse) c. agardh kullanılarak biyosorpsiyonu. Trakya Üniversity Journal of Natural Science, 18 (2): 81-87.
  • Pradhan D, Sukla LB, Mishra BB, Devi N. 2019. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp., Journal of Cleaner Production, 209: 617-629.
  • Rangabhashiyam S ve Selvaraju N. 2015. Evaluation of the biosorption potential of a novel Caryota urens inflorescence waste biomass fort he removal of hexavalent chromium from aqueous solutions. Journal of Taiwan Institute of Chemical Engineers, 47: 59-70.
  • Rangabhashiyam S, Suganya E, Lity AV, Selvaraju N. 2016. Equilibrium and kinetics studies of hexavalent chromium biosorption on a novel green macroalgae Enteromorpha sp.. research on Chemical Intermediates, 42(2): 1275-1294.
  • Romero-Gonzalez J, Peralta-Videa JR, Rodriguez E, Ramirez SL, Gardea-Torresdey JL, 2005. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. The Journal of Chemical Thermodynamics, 37 (4): 343-347.
  • Sanchez C, 2009. Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85(5): 1321-1337.
  • Sanghi R, Sankararamakrishnan N, Dave, BC, 2009. Fungal bioremediation of chromates: conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions. Journal of Hazardous Materials, 169: 1074-1080.
  • Semerjian L, 2018. Removal of heavy metals (Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sawdust: equilibrium, kinetic, and thermodynamic studies. Environmental Technology&Innovation, 12: 91-103.
  • Sethy TR ve Sahoo PK, 2019. Highly toxic Cr(VI) adsorption by (chitosan-g-PMMA)/silica bionanocomposite prepared via emulsifier-free emulsion polymerisation. International Journal of Biological Macromolecules, 122: 1184-1190.
  • Shafey EI, 2005. Behaviour of reduction-sorption of chromium(VI) from an aqueous solution on a modified sorbent from rice husk. Water, Air, & Soil Pollution, 163: 81-102.
  • Sivakumar D, Shankar D, Kandaswamy AN, Ammaiappan M, 2014. Role of electro-dialysis and electro-dialysis cum adsorption for chromium(VI) reduction. Pollution Research, 33 (3): 547-552.
  • Srivastava S, Agrawal SB, Mondal MK. 2015. Biosorption isotherms and kinetics on removal of Cr(VI) using native and chemically modified Lagerstroemia speciosa bark. Ecological Engineering, 85: 56-66.
  • Sugashini S ve Begum KMMS, 2013. Column adsorption studies fort he removal of Cr(VI) ions by ethylamine modified chitosan carbonized rice husk composite beads with modelling and optimization. Journal of Chemistry, 2013: 1-11.
  • Tekerlekopoulou AG, Tsiflikiotou M, Akritidou L, Viennas A, Tsiamis G, Pavlou S, Bourtzis K, Vayenas DV, 2013. Modelling of biological Cr(VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems. Water Research, 47: 623-639.
  • Wang PC, Mori T, Komori K, Sasatsu M, Toda H, Ohtake H, 1989. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Applied and Environmental Microbiology, 55: 1665-1669.
  • Xie B, Shan C, Xu Z, Li X, Zhang X, Chen J, Pan B, 2017. One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation. Chemical Engineering Journal, 308: 791-797.
  • Xu X, Zhang Z, Huang Q, Chen W, 2018. Biosorption performance of multimetal resistant fungus Penicillium chrysogenum XJ-1 for removal of Cu2+ and Cr6+ from aqueous solutions. Geomicrobiology Journal, 35 (1):
  • Yacou C, Altenor S, Carene B, Gaspard S, 2018. Chemical structure investigation of tropical Turbinaria turbinata seaweeds and its derived carbon sorbents applied for the removal of hexavalent chromium in water. Algal Research, 34: 25-36.
  • Zhou J, Wang Y, Wang J, Qiao W, Long D, Ling L, 2016. Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon microspheres. Journal of Colloid and Interface Science, 462: 200-207.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Aslı Göçenoğlu Sarıkaya 0000-0002-7161-7003

Publication Date December 31, 2019
Published in Issue Year 2019 Issue: 17

Cite

APA Göçenoğlu Sarıkaya, A. (2019). Sulu Çözeltilerden Cr(VI)’nın Biyosorpsiyonunda Pleurotus ostreatus’un Biyokütle Olarak Kullanımının Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(17), 1173-1183. https://doi.org/10.31590/ejosat.656319