Research Article
BibTex RIS Cite

İnce Cidarlı Kompozit Kiriş Olarak Modellenmiş Uçak Kanatlarının Eğilme-Eğilme Bağlaşım Titreşiminin Aktif Kontrolü

Year 2019, Issue: 17, 1274 - 1284, 31.12.2019
https://doi.org/10.31590/ejosat.659331

Abstract

Aktif titreşim kontrol metotlarının geliştirilmesi ve uygulanması günümüzde hava uzay yapılarının performans gerekliliklerini sağlamak ve verimliliklerini iyileştirmek açısından oldukça önemli bir konu haline gelmiştir. Bu ilginin en büyük sebebi bu tarz malzemelerin havacılık ve uzay, otomotiv, helikopter ve turbo makinelerin palleri ve robot kolları gibi çeşitli farklı yapılara kolayca uyarlanabilmesi ve kullanılabilir durumda olmasından kaynaklanmaktadır. Akıllı veya uyarlanabilir malzemelerin kullanımı ile, yapıların dinamik karakteristiklerinin öngörülebilir bir şekilde kontrol edilmesi mümkündür. Buna ek olarak, yapısal rezonans ya da çırpınma gibi dinamik kararsızlıkların da önüne geçilebilir. Yapılmış olan bu çalışmada, elmas kesitli uyarlanabilir bir uçak kanadının piezoelektrik malzemeler yardımıyla aktif titreşim kontrolü incelenmiştir. Uçak kanadı ince cidarlı bir kompozit kiriş olarak modellenmiş ve piezoeyleyiciler ve algılayıcılar yapının içine çift olarak çalışmaları için gömülmüştür. Gömülmüş olan bu piezoelektrik malzemeler, tüm kiriş boyunca uzanmaktadırlar ve bu sayede sınır moment kontrol yöntemini geçerli kılmışlardır. Kapalı devre aktif titreşim kontrolü kayma etkilerinin de dahil olduğu enine ve yanal eğilme bağlaşımı gösteren uçak kanadına uygulanmıştır. Oransal geri besleme ve hız geri besleme kontrol yasaları olmak üzere iki farklı kontrol yasası kullanılmıştır. Serbest titreşim problemi Extended Galerkin Yöntemi ile çözülmüş, çeşitli geometrik ve malzeme ile alakalı kalınlık oranı, açıklık oranı ve elyaf açıları gibi parametrelerin doğal frekanslar üzerindeki etkisi incelenmiştir. Elde edilen sonuçlar ışığında, parametrelerin değişimi ile birlikte kompozit uçak kanatlarının tasarımı için bilgiler elde edilmiştir. Hız geri besleme yasası, oransal geri besleme yasasına göre doğal frekanslar üzerinde daha fazla kontrol sağlaması nedeniyle daha elverişli bulunmuştur. Ayrıca hız geri besleme yasası sisteme suni yapısal sönümleme kattığından dolayı hava uzay yapılarında dinamik ya da aeroelastik kararsızlıklar doğurabilecek tehlikeleri engelleme potansiyeline sahiptir.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Bailey, T., & Hubbard Jr, J. E. (1985). Distributed piezoelectric-polymer active vibration control of a cantilever beam. Journal of Guidance, Control, and Dynamics, 8(5), 605-611.
  • Crawley, E. F., & De Luis, J. (1987). Use of piezoelectric actuators as elements of intelligent structures. AIAA journal, 25(10), 1373-1385.
  • Eken, S., & Kaya, M. O. (2015). Flexural-torsional coupled vibration of anisotropic thin-walled beams with biconvex cross-section. Thin-Walled Structures, 94, 372-383.
  • Ghosh, K., & Batra, R. C. (1995). Shape control of plates using piezoceramic elements. AIAA Journal, 33(7), 1354-1357.
  • Han, J. H., Rew, K. H., & Lee, I. (1997). An experimental study of active vibration control of composite structures with a piezo-ceramic actuator and a piezo-film sensor. Smart Materials and Structures, 6(5), 549.
  • Librescu, L., Song, O., & Rogers, C. A. (1993). Adaptive vibrational behavior of cantilevered structures modeled as composite thin-walled beams. International Journal of Engineering Science, 31(5), 775-792.
  • Librescu, L., Meirovitch, L., & Song, O. (1996). Integrated structural tailoring and control using adaptive materials for advanced aircraft wings. Journal of Aircraft, 33(1), 203-213.
  • Librescu, L., Meirovitch, L., & Na, S. S. (1997). Control of cantilever vibration via structural tailoring and adaptive materials. AIAA journal, 35(8), 1309-1315.
  • Librescu, L., & Song, O. (2005). Thin-walled composite beams: theory and application (Vol. 131). Springer Science & Business Media.
  • Meirovitch, L. (1997). Principles and techniques of vibrations (Vol. 1). New Jersey: Prentice Hall.
  • Mitchell, J. A., & Reddy, J. N. (1995). A refined hybrid plate theory for composite laminates with piezoelectric laminae. International Journal of Solids and Structures, 32(16), 2345-2367.
  • Na, S. (1997). Control of dynamic response of thin-walled composite beams using structural tailoring and piezoelectric actuation (Doctoral dissertation, Virginia Tech).
  • Na, S., & Librescu, L. (1998). Oscillation control of cantilevers via smart materials technology and optimal feedback control: actuator location and power consumption issues. Smart Materials and Structures, 7(6), 833.
  • Na, S., & Librescu, L. (2000a). Dynamic response of adaptive cantilevers carrying external stores and subjected to blast loading. Journal of Sound and Vibration, 231(4), 1039-1055.
  • Na, S., & Librescu, L. (2000b). Optimal vibration control of thin-walled anisotropic cantilevers exposed to blast loadings. Journal of Guidance, Control, and Dynamics, 23(3), 491-500.
  • Qin, Z. (2001). Vibration and Aeroelasticity of Advanced Aircraft Wings Modeled as Thin-Walled Beams--Dynamics, Stability and Control (Doctoral dissertation, Virginia Tech).
  • Wang, B. T., & Rogers, C. A. (1991). Laminate plate theory for spatially distributed induced strain actuators. Journal of Composite Materials, 25(4), 433-452.
  • Song, O., Kim, J. B., & Librescu, L. (2001). Synergistic implications of tailoring and adaptive materials technology on vibration control of anisotropic thin-walled beams. International Journal of Engineering Science, 39(1), 71-94.
  • Tzou, H. (1993). Piezoelectric shells: Distributed sensing and control of continua.
  • Yildiz, K., Eken, S., & Kaya, M. O. (2014, November). Active Vibration Control of Aircraft Wings Modeled as Thin-Walled Composite Beams Using Piezoelectric Actuation. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection.

Active Control of Bending-Bending Coupled Vibration of Aircraft Wings Modeled as Thin-Walled Composite Beams

Year 2019, Issue: 17, 1274 - 1284, 31.12.2019
https://doi.org/10.31590/ejosat.659331

Abstract

The development and implementation of active vibration control methods have attracted considerable attention in the recent years due to enhanced efficiency and performance requirements in aerospace structures. Using adaptive materials, the dynamic characteristics of structures could be controlled in a predictable manner to prevent dynamic instabilities such as structural resonance. This study presents the active vibration control of a diamond-shaped adaptive aircraft wing by using piezoelectric actuation. The aircraft wing is modeled as a thin-walled composite beam in which the piezoactuator/sensors are embedded into the structure to serve as couples. The piezoactuators/sensor are spread over the entire span to benefit from the bending moment control. The closed loop active vibration control is performed for the aircraft wing featuring the coupled motion of transverse and lateral bending including shear effects. Two different control laws, namely proportional feedback control law and velocity feedback control law are employed. The free vibration problem is solved by the Extended Galerkin Method (EGM) and the effects of several geometrical and material aspects such as thickness and aspect ratios, and ply angle on the natural frequencies are investigated. The obtained results with the variations of such parameters provide guidelines for the design of thin-walled composite aircraft wings. Through comparison the velocity feedback control law is found to be superior to the proportional feedback control law as it provides better controllability of natural frequencies. Furthermore, the velocity feedback law also introduces artifical structural damping, hence providing a capability of suppressing the oscillations which may cause dynamic/aeroelastic instabilities in aerospace structures.

Project Number

-

References

  • Bailey, T., & Hubbard Jr, J. E. (1985). Distributed piezoelectric-polymer active vibration control of a cantilever beam. Journal of Guidance, Control, and Dynamics, 8(5), 605-611.
  • Crawley, E. F., & De Luis, J. (1987). Use of piezoelectric actuators as elements of intelligent structures. AIAA journal, 25(10), 1373-1385.
  • Eken, S., & Kaya, M. O. (2015). Flexural-torsional coupled vibration of anisotropic thin-walled beams with biconvex cross-section. Thin-Walled Structures, 94, 372-383.
  • Ghosh, K., & Batra, R. C. (1995). Shape control of plates using piezoceramic elements. AIAA Journal, 33(7), 1354-1357.
  • Han, J. H., Rew, K. H., & Lee, I. (1997). An experimental study of active vibration control of composite structures with a piezo-ceramic actuator and a piezo-film sensor. Smart Materials and Structures, 6(5), 549.
  • Librescu, L., Song, O., & Rogers, C. A. (1993). Adaptive vibrational behavior of cantilevered structures modeled as composite thin-walled beams. International Journal of Engineering Science, 31(5), 775-792.
  • Librescu, L., Meirovitch, L., & Song, O. (1996). Integrated structural tailoring and control using adaptive materials for advanced aircraft wings. Journal of Aircraft, 33(1), 203-213.
  • Librescu, L., Meirovitch, L., & Na, S. S. (1997). Control of cantilever vibration via structural tailoring and adaptive materials. AIAA journal, 35(8), 1309-1315.
  • Librescu, L., & Song, O. (2005). Thin-walled composite beams: theory and application (Vol. 131). Springer Science & Business Media.
  • Meirovitch, L. (1997). Principles and techniques of vibrations (Vol. 1). New Jersey: Prentice Hall.
  • Mitchell, J. A., & Reddy, J. N. (1995). A refined hybrid plate theory for composite laminates with piezoelectric laminae. International Journal of Solids and Structures, 32(16), 2345-2367.
  • Na, S. (1997). Control of dynamic response of thin-walled composite beams using structural tailoring and piezoelectric actuation (Doctoral dissertation, Virginia Tech).
  • Na, S., & Librescu, L. (1998). Oscillation control of cantilevers via smart materials technology and optimal feedback control: actuator location and power consumption issues. Smart Materials and Structures, 7(6), 833.
  • Na, S., & Librescu, L. (2000a). Dynamic response of adaptive cantilevers carrying external stores and subjected to blast loading. Journal of Sound and Vibration, 231(4), 1039-1055.
  • Na, S., & Librescu, L. (2000b). Optimal vibration control of thin-walled anisotropic cantilevers exposed to blast loadings. Journal of Guidance, Control, and Dynamics, 23(3), 491-500.
  • Qin, Z. (2001). Vibration and Aeroelasticity of Advanced Aircraft Wings Modeled as Thin-Walled Beams--Dynamics, Stability and Control (Doctoral dissertation, Virginia Tech).
  • Wang, B. T., & Rogers, C. A. (1991). Laminate plate theory for spatially distributed induced strain actuators. Journal of Composite Materials, 25(4), 433-452.
  • Song, O., Kim, J. B., & Librescu, L. (2001). Synergistic implications of tailoring and adaptive materials technology on vibration control of anisotropic thin-walled beams. International Journal of Engineering Science, 39(1), 71-94.
  • Tzou, H. (1993). Piezoelectric shells: Distributed sensing and control of continua.
  • Yildiz, K., Eken, S., & Kaya, M. O. (2014, November). Active Vibration Control of Aircraft Wings Modeled as Thin-Walled Composite Beams Using Piezoelectric Actuation. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kaan Yıldız

Project Number -
Publication Date December 31, 2019
Published in Issue Year 2019 Issue: 17

Cite

APA Yıldız, K. (2019). İnce Cidarlı Kompozit Kiriş Olarak Modellenmiş Uçak Kanatlarının Eğilme-Eğilme Bağlaşım Titreşiminin Aktif Kontrolü. Avrupa Bilim Ve Teknoloji Dergisi(17), 1274-1284. https://doi.org/10.31590/ejosat.659331