Research Article
BibTex RIS Cite

Computation and Assessment of Environmental Emissions Resulting from Traffic Operations at Roundabouts

Year 2019, Special Issue 2019, 130 - 145, 31.10.2019
https://doi.org/10.31590/ejosat.637594

Abstract

Now recognised as a dangerous side effect of increasing human activity and particularly the use of fossil fuels, is the impact on air quality, which has deteriorated considerably in recent times. In particular, the dramatic rise in road traffic has driven up the levels of air pollution in our towns and cities, leading to serious problems for both public health and the environment. To redress this, Environment Policies developed by the World Health Organisation (WHO) and European Commission (EC) have identified clean air as an essential requirement to human health and for the environment – a human right. Therefore, the need for managing emissions resulting from road traffic has seen significant attention. Coincidentally, the increases in the last decades of computational ability has enabled rapid development of transport modelling tools that can be integrated with environmental emissions packages. This has led to the increased ability to test the impact of road emissions on public health and environment. The computational ability to analyse the impact of traffic conditions for both current and forecast operations has enabled engineers to identify improved management and operation techniques for the road intersections with a view to reduce the emissions’ impact. This study presents a new and innovative approach to inform such forecast emissions, representing an approach to develop designs that can reduce emissions by linking various software packages as demonstrated at a trial site at a road intersection at Bath, United Kingdom. The technique linked the transport micro-simulation tool VISSIM with the environmental software EnViVer for emissions analysis. The models are also linked to Geographic Information System software, QGIS, to display changing levels of NOx, CO2 and PM (Particulate Matter) under alternative intersection operational management regimes. This approach has enabled three important outcomes: 1) development of a methodology to directly test emissions and inform air quality thresholds using a series of software tools in an integrated manner, 2) enable the investigation of the air quality outcomes for alternative intersection designs and 3) to produce functions for intersection operational parameters that can predict NOX, CO2 and PM savings. The results have demonstrated that the linking of the computational ability of micro-simulation modelling of road intersections with environmental package has been successful in analysis of operations. The ‘combined’ modelling approach has enabled design development of future intersection operation to with a view to minimising NOX, CO2 and PM. This approach has brought together the crucial traffic parameters of road speed, delay and queuing and related them directly to change in emissions formulation, with the evidenced based prospect of adoption for similar studies in future. To put numbers to the achievement, the results have shown significant achievements for both the NOX level, which is projected to reduce by 14-34%, CO2 by over 13-32% and PM by over 14-26% compared with the base conditions. 

Thanks

This paper is based on two real projects which is funded by two separate streams of research: 1) Highways England funded A46 study to develop operational alternatives to existing, congested location where queues, delays, journey times and emissions were found significant; and 2) Coopoerative Intelligent Transport Systems to reduce Vehicle Emissions: Stage C ‘Evaluation and Appraisal’ which has enabled use of EnViVer software. Author acknowledge the data and software provision to be able to complete this study.

References

  • Amirjamshidi, G., Mostafa, T.S., Misra, A., Roorda, M.J. Integrated model for microsimulating vehicle emissions, pollutant dispersion and population exposure. Transp. Res. Part D Transp. Environ. 2013. 18, 16–24.
  • Abou-Senna, H., Radwan, E., Westerlund, K., Cooper, C.D. Using a traffic simulation model (VISSIM) with an emissions model (MOVES) to predict emissions from vehicles on a limited-access highway. J. Air Waste Manag. Assoc. 2013. 63 (7), 819–831.
  • Bandeira, J.M., Coelho, M.C., Sá, M.E., Tavares, R., Corrego, C.. Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city. Sci. Total Environ. 2011. 409 (6), 1154–1163.
  • Bandeira, J.M., Almeida, T.G., Khattak, A., Rouphail, N.M., Coelho, M.C.. Generating emissions information for route selection – Experimental monitoring and routes characterization. J. Intell. Transp. Sys. 2013. 7 (1), 1–15.
  • Boriboonsomsin, K., Barth, M. Impacts of freeway high-occupancy vehicle lane configuration on vehicle emissions. Transp. Res. Part D Transp. Environ. 2008. 13 (2), 112–125.
  • Borrego, C., Tchepel, O., Salmim, L., Amorim, J., Costa, A.M., Janko, J. Integrated modelling of road traffic emissions: application to Lisbon air quality management. Cybernet. Syst. Int. J. 2004. 35 (5–6), 535–548.
  • Dias, D., Amorim, J.H., Sá, E., Borrego, C., Fontes, T., Fernandes, P., Pereira, S.R., Bandeira, J., Coelho, M.C., & Tchepel, O. Impact of road transport on urban air quality: GIS and GPS as a support for a modeling framework, GIS. Ostrava 2014, 27–29/01, Ostrava.
  • Department for Transport (DfT). Transport Advisory Unit M1: Principles of Modelling and Forecasting (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/427118/webtag-tag-unit-m1-1-principles-of-modelling-and-forecasting.pdf). 2014. (accessed on 25/06/2018).
  • Department for Transport (DfT). Geometric Design of Roundabouts. 2007. Design Manual for Roads and Bridges (DMRB), Volume 6 Road Geometry, Section 2 Junctions, Part 3 TD16/07. Highways England, UK.
  • European Commission. Clean Air (https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=EN), 2008. (accessed on 31/05/2018). European Environment Agency (EEA). Air Quality in Europe – 2-18 Report. Luxembourg: Publications Office of the European Union, 2018. ISSN 1977-8449. doi: 10.2800/777411
  • Eijk, A., Ligterink, N., and Inanc S., EnViVer 4.0 Pro and Enterprise Manual. 2014. Ferreira, L.J.A., Hall, M.D. and van Vliet, D. SATURN – A User’s Manual. AMDAHL V7 Version. Working Paper. Institute of Transport Studies, University of Leeds , Leeds, UK. Working Paper 146. 1981.
  • Fontes T., Pereira, P., Fernandes, J . M., Bandeira, J. M., Coelho, M. C. How to combine different microsimulation tools to assess the environmental impact of road traffic? Lessons and direction. 2015. Transportation Research Part D. 34 (2015) 293-306.
  • Gulliver, J., Briggs, D. Time–space modeling of journey-time exposure to traffic-related air pollution using GIS. Environ. Res. 2005. 97 (1), 10–25.
  • Mensink, C., Cosemans, G. From traffic flow simulations to pollutant concentrations in street canyons and backyards. Environ. Model. Softw. 2008. 23 (3), 288–295.
  • Misra, A., Roorda, M., MacLean, H.L. An integrated modelling approach to estimate urban traffic emissions. Atmos. Environ. 2013. 73, 81–91.
  • Mumovic, D., Crowther, J.M., Stevanovic, Z. Integrated air quality modelling for a designated air quality management area in Glasgow. Build. Environ. 2006. 41 (12), 1703–1712.
  • Namdeo, A.K., Mitchell, G., Dixon, R.. TEMMS: an integrated package for modelling and mapping urban traffic emissions and air quality. Environ. Model. Softw. 2002. 17 (2), 177–188.
  • Project Report.Corporative Intelligent Transport Systems to Reduce Vehicle Emissions: Stage C: Evaluation and Appraisal. 2018.
  • PTV Vision, VISSIM 5.30-05 User Manual, 2011.
  • Gandhi, Ujaval. QGIS Tutorials and Tips. https://www.qgistutorials.com/en/. (accessed on 25/06/2019.).
  • Van Vliet, D. SATURN Travel Demand Forecasting Software User's Manual. 2015, Version 11.3, Section 15.6, http://www.saturnsoftware.co.uk/saturnmanual/pdfs/Section%2015.pdf. (Accessed 25/06/2019)
  • World Health Organisation (WHO). Health Effects of Transport-related Air Pollution. WHO Publ., Copenhagen. http://www.euro.who.int/__data/assets/pdf_file/0013/91102/E88772.pdf (accessed on 24/06/2019.). 2006

Computation and Assessment of Environmental Emissions Resulting from Traffic Operations at Roundabouts

Year 2019, Special Issue 2019, 130 - 145, 31.10.2019
https://doi.org/10.31590/ejosat.637594

Abstract

İnsan aktivitesinin artması ve fosil yakıtların kullanılması, hava kirliliği oluşumunun başlıca etkenlerindendir. Özellikle karayolu trafik yoğunluğunun dramatik bir şekilde artışı yaşam alanlarımızdaki hava kirliliğinde de artış yaratmakla beraber, hem insan sağlığını hem de çevreyi ciddi şekilde tehlikeye atmaktadır. Bu nedenlerden dolayı Dünya Sağlık Örgütü (WHO - World Health Organisation) ve Avrupa Komisyonu (EC - European Commission) tarafından temiz hava, insan sağlığı ve çevre kirliliğinin önlenmesi için Çevre Politikaları geliştirilmiştir. Bu politikalarla beraber karayolu trafiğinden kaynaklanan emisyonları kontrol altına alınması konusu önemli derecede talep görmüştür. Tesadüfen, son yıllarda hesaplama kabiliyetindeki artış, ulaştırma modelleme araçlarının daha da geliştirilmesi ve çevresel emisyon paketleri ile entegrasyonunu sağlamış ve bununla beraber karayolu emisyonlarının halk sağlığı ve çevre üzerindeki etkisini test etme becerisi artmıştır. Mevcut ve geleceğe yönelik tahmin edilen operasyonlar için trafik koşullarının etkisini analiz etme yeteneği, mühendislerin emisyonların etkisini azaltmak amacıyla yol kavşaklarında gelişmiş yönetim ve çalışma yapmalarını sağlamıştır. Bu çalışma İngiltere’nin Bath şehrinde bulunan bir yol kavşağını değerlendirmek için çeşitli yazılımları birbirine bağlayarak emisyonları azaltmak ve tasarımlar geliştirmek, tahmini emisyonların bilgilendirilmesi için yeni bir yaklaşım sunmaktadır. Geliştirilen metod çerçevesi, VISSIM ulaşɪm mikro simülasyon aracını, emisyon analizi için çevre yazılımı olan EnViVer ile ilişkilendirerek elde edilmiştir. Modeller ayrıca alternatif kavşak operasyonel yönetimi için değişen NOx, CO2 ve PM (Partikül Madde) seviyelerini görüntülemek için Coğrafi Bilgi Sistemi yazılımı olan QGIS ile de bağlantılandɪrɪlmɪştɪr. Bu yaklaşım üç önemli sonucu ortaya çıkarmıştır: 1) Bir dizi yazılım aracı kullanarak emisyonları test etmek ve hava kalitesi eşiklerini bütünleşik bir şekilde kullanmak için bir metodolojinin geliştirilmesi; 2) Hava kalitesini destekleyen alternatif kavşak tasarımlarının tahmin edilmesi; ve 3) NOX, CO2 ve PM güvenilir fonksiyonların üretilmesi.
Sonuçlar yol kavşaklarının mikro simülasyon modellemesinin çevresel pakete bağlanması için hesaplama yeteneğinin, işlemlerin analizinde başarılı olduğunu göstermiştir. 'Birleşik' modelleme yaklaşımı, NOX, CO2 ve PM'yi en aza indirgemek için gelecekteki kavşak işleminin tasarım geliştirmesini sağlamıştır. Bu yaklaşım, gelecekteki benzer çalışmaların benimsenmesini mümkün kılarak, karayolu hızının, gecikmenin ve emisyon formülasyonundaki değişikliklerin gelişmesine yardımcı olmuştur. Ulaşılan sonuçlara göre, temel koşullarda % 14-34 azaltması öngörülen NOX, % 13-32 oranında CO2 ve %14-26 oranında PM'yi azaltarak önemli başarılar sağlamıştır.

References

  • Amirjamshidi, G., Mostafa, T.S., Misra, A., Roorda, M.J. Integrated model for microsimulating vehicle emissions, pollutant dispersion and population exposure. Transp. Res. Part D Transp. Environ. 2013. 18, 16–24.
  • Abou-Senna, H., Radwan, E., Westerlund, K., Cooper, C.D. Using a traffic simulation model (VISSIM) with an emissions model (MOVES) to predict emissions from vehicles on a limited-access highway. J. Air Waste Manag. Assoc. 2013. 63 (7), 819–831.
  • Bandeira, J.M., Coelho, M.C., Sá, M.E., Tavares, R., Corrego, C.. Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city. Sci. Total Environ. 2011. 409 (6), 1154–1163.
  • Bandeira, J.M., Almeida, T.G., Khattak, A., Rouphail, N.M., Coelho, M.C.. Generating emissions information for route selection – Experimental monitoring and routes characterization. J. Intell. Transp. Sys. 2013. 7 (1), 1–15.
  • Boriboonsomsin, K., Barth, M. Impacts of freeway high-occupancy vehicle lane configuration on vehicle emissions. Transp. Res. Part D Transp. Environ. 2008. 13 (2), 112–125.
  • Borrego, C., Tchepel, O., Salmim, L., Amorim, J., Costa, A.M., Janko, J. Integrated modelling of road traffic emissions: application to Lisbon air quality management. Cybernet. Syst. Int. J. 2004. 35 (5–6), 535–548.
  • Dias, D., Amorim, J.H., Sá, E., Borrego, C., Fontes, T., Fernandes, P., Pereira, S.R., Bandeira, J., Coelho, M.C., & Tchepel, O. Impact of road transport on urban air quality: GIS and GPS as a support for a modeling framework, GIS. Ostrava 2014, 27–29/01, Ostrava.
  • Department for Transport (DfT). Transport Advisory Unit M1: Principles of Modelling and Forecasting (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/427118/webtag-tag-unit-m1-1-principles-of-modelling-and-forecasting.pdf). 2014. (accessed on 25/06/2018).
  • Department for Transport (DfT). Geometric Design of Roundabouts. 2007. Design Manual for Roads and Bridges (DMRB), Volume 6 Road Geometry, Section 2 Junctions, Part 3 TD16/07. Highways England, UK.
  • European Commission. Clean Air (https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=EN), 2008. (accessed on 31/05/2018). European Environment Agency (EEA). Air Quality in Europe – 2-18 Report. Luxembourg: Publications Office of the European Union, 2018. ISSN 1977-8449. doi: 10.2800/777411
  • Eijk, A., Ligterink, N., and Inanc S., EnViVer 4.0 Pro and Enterprise Manual. 2014. Ferreira, L.J.A., Hall, M.D. and van Vliet, D. SATURN – A User’s Manual. AMDAHL V7 Version. Working Paper. Institute of Transport Studies, University of Leeds , Leeds, UK. Working Paper 146. 1981.
  • Fontes T., Pereira, P., Fernandes, J . M., Bandeira, J. M., Coelho, M. C. How to combine different microsimulation tools to assess the environmental impact of road traffic? Lessons and direction. 2015. Transportation Research Part D. 34 (2015) 293-306.
  • Gulliver, J., Briggs, D. Time–space modeling of journey-time exposure to traffic-related air pollution using GIS. Environ. Res. 2005. 97 (1), 10–25.
  • Mensink, C., Cosemans, G. From traffic flow simulations to pollutant concentrations in street canyons and backyards. Environ. Model. Softw. 2008. 23 (3), 288–295.
  • Misra, A., Roorda, M., MacLean, H.L. An integrated modelling approach to estimate urban traffic emissions. Atmos. Environ. 2013. 73, 81–91.
  • Mumovic, D., Crowther, J.M., Stevanovic, Z. Integrated air quality modelling for a designated air quality management area in Glasgow. Build. Environ. 2006. 41 (12), 1703–1712.
  • Namdeo, A.K., Mitchell, G., Dixon, R.. TEMMS: an integrated package for modelling and mapping urban traffic emissions and air quality. Environ. Model. Softw. 2002. 17 (2), 177–188.
  • Project Report.Corporative Intelligent Transport Systems to Reduce Vehicle Emissions: Stage C: Evaluation and Appraisal. 2018.
  • PTV Vision, VISSIM 5.30-05 User Manual, 2011.
  • Gandhi, Ujaval. QGIS Tutorials and Tips. https://www.qgistutorials.com/en/. (accessed on 25/06/2019.).
  • Van Vliet, D. SATURN Travel Demand Forecasting Software User's Manual. 2015, Version 11.3, Section 15.6, http://www.saturnsoftware.co.uk/saturnmanual/pdfs/Section%2015.pdf. (Accessed 25/06/2019)
  • World Health Organisation (WHO). Health Effects of Transport-related Air Pollution. WHO Publ., Copenhagen. http://www.euro.who.int/__data/assets/pdf_file/0013/91102/E88772.pdf (accessed on 24/06/2019.). 2006
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Göktuğ Tenekeci This is me 0000-0003-4177-382X

Publication Date October 31, 2019
Published in Issue Year 2019 Special Issue 2019

Cite

APA Tenekeci, G. (2019). Computation and Assessment of Environmental Emissions Resulting from Traffic Operations at Roundabouts. Avrupa Bilim Ve Teknoloji Dergisi130-145. https://doi.org/10.31590/ejosat.637594