Research Article
BibTex RIS Cite

A Design Methodology for Cuttlefish Shaped Amphibious Robot

Year 2019, Special Issue 2019, 214 - 224, 31.10.2019
https://doi.org/10.31590/ejosat.637838

Abstract

Most of the engineering problems can be easily solved by using biomimetic designs. Biomimetic is the process of imitating live animals to create new designs. For example, by mimicking the movements of a fish or snake, it is possible to transfer the desired swimming or crawling movements to a robot. This research is based on an amphibious robot where the propulsion system is imitated by a cuttlefish. In this study, to obtain the required sine wave motion for the cuttlefish's fin, crank-rocker mechanisms are used. Additionally, a circular slot mechanism was used to move these crank-rocker mechanism up and down as in the cuttlefish fins. Since the cuttlefish has two symmetrical wings, these crank-rocker and circular slot mechanisms are repeated symmetrically on both sides. Two separate servo motors (one on the right and one on the left) were used to control the angular position of the crankshafts in circular slots. These servo motors allow the fins to move up and down while the robot is in the water. They also serve to hold the wings at a fixed angle in terrestrial mode. In similar applied robotic researches, dozens of servo motors are used to obtain the required sine motion. This study proposes a propulsion system that can be operate with simple crank-rocker and circular slot mechanisms, instead of using too many servo motors that are expensive and constitutes control complexity. In this study, a design methodology is proposed for this new propulsion system. Various conditions have been considered in the design procedure. In the design criteria section, the required force and velocity, the capacity to overcome obstacles and the motion requirements has been considered for an amphibious robot. Furthermore, the requirements of a continuous movement for oscillating motion have been also considered. As a result of this study, minimum crank number and crank angles were obtained for the undulating motion. It has been also considered the necessary continuous balance condition, in order to make motion on land without tumbling. The calculation of the part lengths that meets the design criteria is described in the mechanism synthesis section. 

References

  • Yang, Q., Yu, J., Ding, R., & Tan, M. (2008, October). Body-deformation steering approach to guide a multi-mode amphibious robot on land. In International Conference on Intelligent Robotics and Applications (pp. 1021-1030). Springer, Berlin, Heidelberg.
  • Yang, Q., Yu, J., Tan, M., & Wang, W. (2007, December). Preliminary development of a biomimetic amphibious robot capable of multi-mode motion. In 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 769-774). IEEE.
  • Yu, J., Tang, Y., Zhang, X., & Liu, C. (2010, December). Design of a wheel-propeller-leg integrated amphibious robot. In 2010 11th International Conference on Control Automation Robotics & Vision (pp. 1815-1819). IEEE.
  • Boxerbaum, A. S., Werk, P., Quinn, R. D., & Vaidyanathan, R. (2005, July). Design of an autonomous amphibious robot for surf zone operation: part I mechanical design for multi-mode mobility. In Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. (pp. 1459-1464). IEEE.
  • Crespi, A., Badertscher, A., Guignard, A., & Ijspeert, A. J. (2005). AmphiBot I: an amphibious snake-like robot. Robotics and Autonomous Systems, 50(4), 163-175.
  • Song, S. H., Kim, M. S., Rodrigue, H., Lee, J. Y., Shim, J. E., Kim, M. C., ... & Ahn, S. H. (2016). Turtle mimetic soft robot with two swimming gaits. Bioinspiration & biomimetics, 11(3), 036010.
  • Yildirim, S., & Arslan, E. (2012). Design and Dynamic Analysis of Six Legged Walking Robot. Journal of Computer Science and Control Systems, 5(1), 112.
  • Yıldırım, Ş., & Arslan, E. (2018). ODE (Open Dynamics Engine) based stability control algorithm for six legged robot. Measurement, 124, 367-377.
  • Wang, W., Yu, J., Ding, R., & Tan, M. (2009, August). Bio-inspired design and realization of a novel multimode amphibious robot. In 2009 IEEE International Conference on Automation and Logistics (pp. 140-145). IEEE.
  • Hu, T., Shen, L., Lin, L., & Xu, H. (2009). Biological inspirations, kinematics modeling, mechanism design and experiments on an undulating robotic fin inspired by Gymnarchus niloticus. Mechanism and machine theory, 44(3), 633-645.
  • Wang, Z., Hang, G., Li, J., Wang, Y., & Xiao, K. (2008). A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Sensors and Actuators A: Physical, 144(2), 354-360.
  • Fish, F. E., & Lauder, G. V. (2017). Control surfaces of aquatic vertebrates: active and passive design and function. Journal of Experimental Biology, 220(23), 4351-4363.
  • Sfakiotakis, M., Lane, D. M., & Davies, J. B. C. (1999). Review of fish swimming modes for aquatic locomotion. IEEE Journal of oceanic engineering, 24(2), 237-252.
  • Peter, B., Ratnaweera, R., Fischer, W., Pradalier, C., & Siegwart, R. Y. (2010, May). Design and evaluation of a fin-based underwater propulsion system. In 2010 IEEE International Conference on Robotics and Automation (pp. 3751-3756). IEEE.
  • Kim, S., Laschi, C., & Trimmer, B. (2013). Soft robotics: a bioinspired evolution in robotics. Trends in biotechnology, 31(5), 287-294.
  • Low, K. H., & Willy, A. (2006). Biomimetic motion planning of an undulating robotic fish fin. Journal of Vibration and Control, 12(12), 1337-1359.
  • Siahmansouri, M., Ghanbari, A., & Fakhrabadi, M. M. S. (2011). Design, implementation and control of a fish robot with undulating fins. International Journal of Advanced Robotic Systems, 8(5), 60.
  • Pliant Energy Systems - Swimming Skating Crawling Robot. Retrieved from https://www.pliantenergy.com/home-1
  • Hassaan, G. A., Al-Gamil, M., & Lashin, M. (2013). Optimal kinematic synthesis of a 4-bar planar crank-rocker mechanism for a specific stroke and time ratio. International Journal of Mechanical and Production Engineering Research and Development, 3(2), 87-98.

Mürekkepbalığı Şekilli Amfibi Robot için Bir Tasarım Metodolojisi

Year 2019, Special Issue 2019, 214 - 224, 31.10.2019
https://doi.org/10.31590/ejosat.637838

Abstract

Biyomimetik tasarımlar kullanılarak mühendislik problemlerinin çoğu kolay bir şekilde çözülebilir. Biyomimetik, canlı hayvanları taklit ederek yeni tasarımlar oluşturma işlemidir. Örneğin, bir balık veya yılanın hareketlerini taklit ederek, istenen yüzme veya gezinme hareketlerinin bir robota aktarılması mümkündür. Bu araştırma, tahrik sisteminin mürekkep balığı tarafından taklit edildiği bir amfibi robota dayanmaktadır. Bu çalışmada, mürekkepbalığının yüzgeci için gerekli olan sinüs dalgası hareketinin elde edilmesinde, krank-rocker mekanizmaları kullanılmıştır. İlaveten, bu krank çubuk mekanizmasının mürekkep balığı kanatlarında olduğu gibi yukarı ve aşağı hareket ettirilmesinde dairesel bir slot mekanizması kullanılmıştır. Mürekkep balığında simetrik iki kanat bulunduğundan, bu krank-rocker ve dairesel slot mekanizmaları her iki tarafta da simetrik olarak tekrarlanmıştır. Krank millerinin dairesel slotlar içerisindeki açısal konumlarının kontrol edilmesi için, iki ayrı servo motor (biri sağda ve biri solda) kullanılmıştır. Kullanılan bu servo motorlar robot su içerisindeyken, kanatların aşağı ve yukarı doğru hareket etmesini sağlarlar. Ayrıca karasal modda kanatları sabit bir açıda tutmaya yararlar. Benzer uygulamalı robotik çalışmalarında, gerekli sinüs hareketini elde etmek için düzinelerce servo motor kullanılır. Bu çalışmada, pahalı ve kontrol karmaşası oluşturan bu kadar sayıda servo motor kullanmak yerine, basit krank-rocker ve dairesel slot mekanizmaları ile çalışan bir tahrik sistemi önerilmektedir. Bu çalışmada, bu yeni tahrik sistemi için bir tasarım metodolojisi önerilmiştir. Tasarım prosedüründe çeşitli koşullar göz önünde bulundurulmuştur. Tasarım kriterleri bölümünde, amfibi bir robot için gerekli kuvvet ve hız, engellerin üstesinden gelme kapasitesi ve hareket gereksinimleri dikkate alınmıştır. Ayrıca, salınım hareketi için ihtiyaç duyulan sürekli hareket gereksinimi de göz önünde bulundurulmuştur. Bu çalışma sonucunda dalgalanma hareketi için gereken minimum krank sayısı ve krank açıları elde edilmiştir. Karada yuvarlanmadan hareket gerçekleştirebilmek adına gerekli olan sürekli denge şartı da göz önünde bulundurulmuştur. Tasarım kriterlerini sağlayan parça uzunluklarının hesaplanması, mekanizma sentezi bölümünde açıklanmıştır.

References

  • Yang, Q., Yu, J., Ding, R., & Tan, M. (2008, October). Body-deformation steering approach to guide a multi-mode amphibious robot on land. In International Conference on Intelligent Robotics and Applications (pp. 1021-1030). Springer, Berlin, Heidelberg.
  • Yang, Q., Yu, J., Tan, M., & Wang, W. (2007, December). Preliminary development of a biomimetic amphibious robot capable of multi-mode motion. In 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 769-774). IEEE.
  • Yu, J., Tang, Y., Zhang, X., & Liu, C. (2010, December). Design of a wheel-propeller-leg integrated amphibious robot. In 2010 11th International Conference on Control Automation Robotics & Vision (pp. 1815-1819). IEEE.
  • Boxerbaum, A. S., Werk, P., Quinn, R. D., & Vaidyanathan, R. (2005, July). Design of an autonomous amphibious robot for surf zone operation: part I mechanical design for multi-mode mobility. In Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. (pp. 1459-1464). IEEE.
  • Crespi, A., Badertscher, A., Guignard, A., & Ijspeert, A. J. (2005). AmphiBot I: an amphibious snake-like robot. Robotics and Autonomous Systems, 50(4), 163-175.
  • Song, S. H., Kim, M. S., Rodrigue, H., Lee, J. Y., Shim, J. E., Kim, M. C., ... & Ahn, S. H. (2016). Turtle mimetic soft robot with two swimming gaits. Bioinspiration & biomimetics, 11(3), 036010.
  • Yildirim, S., & Arslan, E. (2012). Design and Dynamic Analysis of Six Legged Walking Robot. Journal of Computer Science and Control Systems, 5(1), 112.
  • Yıldırım, Ş., & Arslan, E. (2018). ODE (Open Dynamics Engine) based stability control algorithm for six legged robot. Measurement, 124, 367-377.
  • Wang, W., Yu, J., Ding, R., & Tan, M. (2009, August). Bio-inspired design and realization of a novel multimode amphibious robot. In 2009 IEEE International Conference on Automation and Logistics (pp. 140-145). IEEE.
  • Hu, T., Shen, L., Lin, L., & Xu, H. (2009). Biological inspirations, kinematics modeling, mechanism design and experiments on an undulating robotic fin inspired by Gymnarchus niloticus. Mechanism and machine theory, 44(3), 633-645.
  • Wang, Z., Hang, G., Li, J., Wang, Y., & Xiao, K. (2008). A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Sensors and Actuators A: Physical, 144(2), 354-360.
  • Fish, F. E., & Lauder, G. V. (2017). Control surfaces of aquatic vertebrates: active and passive design and function. Journal of Experimental Biology, 220(23), 4351-4363.
  • Sfakiotakis, M., Lane, D. M., & Davies, J. B. C. (1999). Review of fish swimming modes for aquatic locomotion. IEEE Journal of oceanic engineering, 24(2), 237-252.
  • Peter, B., Ratnaweera, R., Fischer, W., Pradalier, C., & Siegwart, R. Y. (2010, May). Design and evaluation of a fin-based underwater propulsion system. In 2010 IEEE International Conference on Robotics and Automation (pp. 3751-3756). IEEE.
  • Kim, S., Laschi, C., & Trimmer, B. (2013). Soft robotics: a bioinspired evolution in robotics. Trends in biotechnology, 31(5), 287-294.
  • Low, K. H., & Willy, A. (2006). Biomimetic motion planning of an undulating robotic fish fin. Journal of Vibration and Control, 12(12), 1337-1359.
  • Siahmansouri, M., Ghanbari, A., & Fakhrabadi, M. M. S. (2011). Design, implementation and control of a fish robot with undulating fins. International Journal of Advanced Robotic Systems, 8(5), 60.
  • Pliant Energy Systems - Swimming Skating Crawling Robot. Retrieved from https://www.pliantenergy.com/home-1
  • Hassaan, G. A., Al-Gamil, M., & Lashin, M. (2013). Optimal kinematic synthesis of a 4-bar planar crank-rocker mechanism for a specific stroke and time ratio. International Journal of Mechanical and Production Engineering Research and Development, 3(2), 87-98.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Erdem Arslan 0000-0002-4961-4922

Kadir Akça This is me 0000-0002-1780-633X

Publication Date October 31, 2019
Published in Issue Year 2019 Special Issue 2019

Cite

APA Arslan, E., & Akça, K. (2019). A Design Methodology for Cuttlefish Shaped Amphibious Robot. Avrupa Bilim Ve Teknoloji Dergisi214-224. https://doi.org/10.31590/ejosat.637838