Research Article
BibTex RIS Cite

Comparison of Hash Algorithms for DNA Sequences for Cyberbiosecurity Applications

Year 2020, Issue: 18, 656 - 663, 15.04.2020
https://doi.org/10.31590/ejosat.642275

Abstract

There is increasing interest in using DNA as a biological computation storage material in which information will be encoded, transmitted and stored as DNA sequences. DNA is perceived to be more effective and efficient than silicon-based approaches when evaluated using criteria such as storage density capability, cost and access to information without using special equipment and resilience to material change. However, knowledge representation using DNA sequences brings new technical security challenges for preventing the encoded knowledge from being hacked.
In this paper, we examine the suitability of four commonly used text based hash algorithms (MD5, SHA1, SHA2-256 and SHA2-512) to evaluate the integrity of DNA sequences of different fixed lengths. The criteria used for evaluation were plain text sensitivity and compile time. Our results show that each algorithm has strengths and weaknesses but in general the SHA2-512 algorithm performs better on plain text sensitivity and the MD5 algorithm performs better on compile time.

References

  • Peccoud, J., Gallegos, J. E., Murch, R., Buchholz, W. G., & Raman, S. (2018). Cyberbiosecurity: from naive trust to risk awareness. Trends in biotechnology, 36(1), 4-7.
  • Murch, R. S., So, W. K., Buchholz, W. G., Raman, S., & Peccoud, J. (2018). Cyberbiosecurity: an emerging new discipline to help safeguard the bioeconomy. Frontiers in bioengineering and biotechnology, 6, 39.
  • Anonim (2010): Biyogüvenlik Kanunu. 26 Mart 2010 tarihli Resmi Gazete, Sayı: 27533
  • Tumpey, T. M., Basler, C. F., Aguilar, P. V., Zeng, H., Solórzano, A., Swayne, D. E., ... & Garcia-Sastre, A. (2005). Characterization of the reconstructed 1918 Spanish influenza pandemic virus. science, 310(5745), 77-80.
  • Turner, G. (2019, May). The Growing Need for Cyberbiosecurity. In InSITE 2019: Informing Science+ IT Education Conferences: Jerusalem (pp. 207-215).
  • Richardson, L. C., Connell, N. D., Lewis, S. M., Pauwels, E., & Murch, R. S. (2019). Cyberbiosecurity: a call for cooperation in a new threat landscape. Frontiers in Bioengineering and Biotechnology, 7.
  • Adam, L., Kozar, M., Letort, G., Mirat, O., Srivastava, A., Stewart, T., ... & Peccoud, J. (2011). Strengths and limitations of the federal guidance on synthetic DNA. Nature biotechnology, 29(3), 208.
  • U.S.National Library of Medicine, https://ghr.nlm.nih.gov/primer/basics/dna internet adresinden 11.10. 2019 tarihinde edinilmiştir.
  • Nowoshilow, S., Schloissnig, S., Fei, J. F., Dahl, A., Pang, A. W., Pippel, M., ... & Falcon, F. (2018). The axolotl genome and the evolution of key tissue formation regulators. Nature, 554(7690), 50.
  • National Human Genome Research Institute (NHGRI). https://www.genome.gov/human-genome-project/Completion-FAQ internet adresinden 11.10. 2019 tarihinde edinilmiştir.
  • Rivest, R.L., (1991) “The MD5 message digest algorithm,” Presented at the rump session of Crypto’91.
  • Rivest, R.L. (1992)“The MD5 message-digest algorithm,” Request for Comments (RFC) 1321, Internet Activities Board, Internet Privacy Task Force, April 1992.
  • Stevens, M. (2007). On collisions for MD5.
  • Dougherty, C. R. (2009). Vulnerability Note VU# 836068 MD5 vulnerable to collision attacks. Retrieved August, 26, 2009.
  • Stevens, M., Bursztein, E., Karpman, P., & Albertini, A. (2017). Announcing the first SHA1 collision (2017). URL: https://security. googleblog. com/2017/02/announcing-first-sha1-collision. html.
  • Özkoç, E. E. DNA-based user authentication schemes for wireless body area network. e-Society 2018, 217.
  • Harvard University, The Database of Useful Biological Numbers https://bionumbers.hms.harvard.edu/bionumber.aspx?id=104316&ver=1 internet adresinden 11.10. 2019 tarihinde edinilmiştir.
  • Nielsen, J., & Keasling, J. D. (2011). Synergies between synthetic biology and metabolic engineering. Nature biotechnology, 29(8), 693.
  • Rollin, J. A., Tam, T. K., & Zhang, Y. H. P. (2013). New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green chemistry, 15(7), 1708-1719.
  • Kiss, A. A., Grievink, J., & Rito‐Palomares, M. (2015). A systems engineering perspective on process integration in industrial biotechnology. Journal of Chemical Technology & Biotechnology, 90(3), 349-355.

Siberbiyogüvenlik Uygulamalarında DNA Dizilimleri için Özet Algoritmaları Karşılaştırılması

Year 2020, Issue: 18, 656 - 663, 15.04.2020
https://doi.org/10.31590/ejosat.642275

Abstract

DNA'nın biyolojik bir hesaplama, depolama malzemesi olarak kullanılmasına yönelik ilgi gün geçtikçe artmaktadır. DNA’nın bu şekilde kullanımı ile bilgiler DNA kodları olarak kodlanabilir, iletilebilir ve saklanabilir. DNA’nın, depolama yoğunluğu kabiliyeti, maliyet ve bilgiye erişim gibi kriterlerle değerlendirildiğinde, silikon bazlı yaklaşımlardan daha etkili ve verimli olduğu düşünülmektedir. Bununla birlikte, DNA dizilerini kullanarak bilgi temsili, kodlanmış bilginin saldırıya uğramasını önlemek için yeni teknik güvenlik zorlukları getirmektedir.
Bu çalışmada, farklı sabit uzunluklardaki DNA dizilerinin bütünlüğünü sağlamak için, yaygın olarak kullanılan dört metin tabanlı özet algoritmasının (MD5, SHA1, SHA2-256 ve SHA2-512) uygunluğu araştırılmıştır. Değerlendirme kriteri olarak açık metin duyarlılığı ve çalışma zamanı kullanılmıştır. Sonuçlar, her bir algoritmanın güçlü ve zayıf yanlarının olduğunu ancak genel olarak SHA2-512 algoritmasının açık metin duyarlılığında ve MD5 algoritmasının derleme zamanında daha iyi performansa sahip olduğunu göstermektedir.

References

  • Peccoud, J., Gallegos, J. E., Murch, R., Buchholz, W. G., & Raman, S. (2018). Cyberbiosecurity: from naive trust to risk awareness. Trends in biotechnology, 36(1), 4-7.
  • Murch, R. S., So, W. K., Buchholz, W. G., Raman, S., & Peccoud, J. (2018). Cyberbiosecurity: an emerging new discipline to help safeguard the bioeconomy. Frontiers in bioengineering and biotechnology, 6, 39.
  • Anonim (2010): Biyogüvenlik Kanunu. 26 Mart 2010 tarihli Resmi Gazete, Sayı: 27533
  • Tumpey, T. M., Basler, C. F., Aguilar, P. V., Zeng, H., Solórzano, A., Swayne, D. E., ... & Garcia-Sastre, A. (2005). Characterization of the reconstructed 1918 Spanish influenza pandemic virus. science, 310(5745), 77-80.
  • Turner, G. (2019, May). The Growing Need for Cyberbiosecurity. In InSITE 2019: Informing Science+ IT Education Conferences: Jerusalem (pp. 207-215).
  • Richardson, L. C., Connell, N. D., Lewis, S. M., Pauwels, E., & Murch, R. S. (2019). Cyberbiosecurity: a call for cooperation in a new threat landscape. Frontiers in Bioengineering and Biotechnology, 7.
  • Adam, L., Kozar, M., Letort, G., Mirat, O., Srivastava, A., Stewart, T., ... & Peccoud, J. (2011). Strengths and limitations of the federal guidance on synthetic DNA. Nature biotechnology, 29(3), 208.
  • U.S.National Library of Medicine, https://ghr.nlm.nih.gov/primer/basics/dna internet adresinden 11.10. 2019 tarihinde edinilmiştir.
  • Nowoshilow, S., Schloissnig, S., Fei, J. F., Dahl, A., Pang, A. W., Pippel, M., ... & Falcon, F. (2018). The axolotl genome and the evolution of key tissue formation regulators. Nature, 554(7690), 50.
  • National Human Genome Research Institute (NHGRI). https://www.genome.gov/human-genome-project/Completion-FAQ internet adresinden 11.10. 2019 tarihinde edinilmiştir.
  • Rivest, R.L., (1991) “The MD5 message digest algorithm,” Presented at the rump session of Crypto’91.
  • Rivest, R.L. (1992)“The MD5 message-digest algorithm,” Request for Comments (RFC) 1321, Internet Activities Board, Internet Privacy Task Force, April 1992.
  • Stevens, M. (2007). On collisions for MD5.
  • Dougherty, C. R. (2009). Vulnerability Note VU# 836068 MD5 vulnerable to collision attacks. Retrieved August, 26, 2009.
  • Stevens, M., Bursztein, E., Karpman, P., & Albertini, A. (2017). Announcing the first SHA1 collision (2017). URL: https://security. googleblog. com/2017/02/announcing-first-sha1-collision. html.
  • Özkoç, E. E. DNA-based user authentication schemes for wireless body area network. e-Society 2018, 217.
  • Harvard University, The Database of Useful Biological Numbers https://bionumbers.hms.harvard.edu/bionumber.aspx?id=104316&ver=1 internet adresinden 11.10. 2019 tarihinde edinilmiştir.
  • Nielsen, J., & Keasling, J. D. (2011). Synergies between synthetic biology and metabolic engineering. Nature biotechnology, 29(8), 693.
  • Rollin, J. A., Tam, T. K., & Zhang, Y. H. P. (2013). New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green chemistry, 15(7), 1708-1719.
  • Kiss, A. A., Grievink, J., & Rito‐Palomares, M. (2015). A systems engineering perspective on process integration in industrial biotechnology. Journal of Chemical Technology & Biotechnology, 90(3), 349-355.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Esma Ergüner Özkoç 0000-0003-1728-5930

Mike Mannion This is me

Publication Date April 15, 2020
Published in Issue Year 2020 Issue: 18

Cite

APA Ergüner Özkoç, E., & Mannion, M. (2020). Siberbiyogüvenlik Uygulamalarında DNA Dizilimleri için Özet Algoritmaları Karşılaştırılması. Avrupa Bilim Ve Teknoloji Dergisi(18), 656-663. https://doi.org/10.31590/ejosat.642275