Year 2020, Volume , Issue 18, Pages 905 - 910 2020-04-15

Isolation and identification of the pyrethroid insecticide deltamethrin degrading bacteria from insects

Özlem GÜR ÖZDAL [1] , Ömer Faruk ALGUR [2]


Many studies have showed that the pesticide residues in the environment increase day by day because of their continuous use. Pesticides can degrade chemically, physically and biologically. Biodegradation is an eco-friendly, inexpensive and highly effective approach compared to other methods. Bacteria are the most commonly used biological agents in biodegradation studies. Widespread use of pyrethroid pesticides such as deltamethrin causes pollution of environment. A total of 14 bacterial isolates were isolated from insects (Poecilimon tauricola, Locusta migratoria, Gryllus bimaculatus and Forficula auricularia) living in pesticide contaminated environments. These bacterial isolates were identified and characterized as Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Bacillus atrophaeus, Acinetobacter lwoffii, Rhodococcus coprophilus, Brevundimonas vesicularis, Pseudomonas syringae, Yersinia frederiksenii, Bacillus licheniformis, Enterobacter intermedius and Serratia marcescens based on biochemical and morphological properties and fatty acid profiles. As a result, these bacterial isolates can be used for the remove of deltamethrin at various environments.
Bacteria, Biodegradation, Deltamethrin
  • Akbar, S., Sultan, S., & Kertesz, M. (2015a). Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics. Current Microbiology, 70(1), 75-84.
  • Akbar, S., Sultan, S., & Kertesz, M. (2015b). Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils. Journal of Basic Microbiology, 55(7), 819-829.
  • Barragan-Huerta, B. E., Costa-Pérez, C., Peralta-Cruz, J., Barrera-Cortés, J., Esparza-García, F., & Rodríguez-Vázquez, R. (2007). Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee. International Biodeterioration & Biodegradation, 59(3), 239-244.
  • Chen, S., Lai, K., Li, Y., Hu, M., Zhang, Y., & Zeng, Y. (2011). Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Applied Microbiology and Biotechnology, 90(4), 1471-1483.
  • Cycoń, M., & Piotrowska-Seget, Z. (2016). Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils: a review. Frontiers in Microbiology, 7, 1463.
  • Cycoń, M., Żmijowska, A., & Piotrowska-Seget, Z. (2014). Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. International Journal of Environmental Science and Technology, 11(5), 1305-1316.
  • Fulekar, M. H. (2009). Bioremediation of fenvalerate by Pseudomonas aeruginosa in a scale up bioreactor. Romanian Biotechnological Letters, 14, 4900-4905.
  • Gaonkar, O., Nambi, I. M., & Suresh Kumar, G. (2019). Biodegradation kinetics of dichlorvos and chlorpyrifos by enriched bacterial cultures from an agricultural soil. Bioremediation Journal, 23(4), 259-276.
  • Gür, Ö., Özdal, M., & Algur, Ö. F. (2014). Biodegradation of the synthetic pyrethroid insecticide α-cypermethrin by Stenotrophomonas maltophilia OG2. Turkish Journal of Biology, 38(5), 684-689.
  • Hao, X., Zhang, X., Duan, B., Huo, S., Lin, W., Xia, X., & Liu, K. (2018). Screening and genome sequencing of deltamethrin-degrading bacterium ZJ6. Current Microbiology, 75(11), 1468-1476.
  • Harley, J. P., & Prescott L.M. 2002. Laboratory Exercises in Microbiology. McGraw-Hill Pub. 5th edition.
  • Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K., & Fukatsu, T. (2012). Symbiont-mediated insecticide resistance. Proceedings of the National Academy of Sciences, 109(22), 8618-8622.
  • Kotan, R., Sahin, F., & Ala, A. (2006). Identification and pathogenicity of bacteria isolated from pome fruit trees in the Eastern Anatolia region of Turkey. Journal of Plant Diseases and Protection, 8-13.
  • Kurbanoglu, E. B., Ozdal, M., Ozdal, O. G., & Algur, O. F. (2015). Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone. Brazilian Journal of Microbiology, 46(2), 631-637.
  • Lee, S., Gan, J., Kim, J. S., Kabashima, J. N., & Crowley, D. E. (2004). Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environmental Toxicology and Chemistry: An International Journal, 23(1), 1-6.
  • Lu, Q., Sun, Y., Ares, I., Anadón, A., Martínez, M., Martínez-Larrañaga, M. R., Yuan, X., Wang, M.A., & Martínez, M. A. (2019). Deltamethrin toxicity: A review of oxidative stress and metabolism. Environmental Research, 170, 260-281.
  • Neerja, Grewal, J., Bhattacharya, A., Kumar, S., Singh, D. K., & Khare, S. K. (2016). Biodegradation of 1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl) ethane (DDT) by using Serratia marcescens NCIM 2919. Journal of Environmental Science and Health, Part B, 51(12), 809-816.
  • Okay, S., Özdal, M., & Kurbanoğlu, E. B. (2013). Characterization, antifungal activity, and cell immobilization of a chitinase from Serratia marcescens MO-1. Turkish Journal of Biology, 37(6), 639-644.
  • Ortiz-Hernández, M. L., Sánchez-Salinas, E., Dantán-González, E., & Castrejón-Godínez, M. L. (2013). Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. Biodegradation-Life of Science, 251-287.
  • Ozdal, M., Ozdal, O. G., & Algur, O. F. (2016a). Isolation and characterization of α-endosulfan degrading bacteria from the microflora of cockroaches. Polish Journal of Microbiology, 65(1), 63-68.
  • Ozdal, Ö. G., Özdal, M., Algur, Ö. F., & Sezen, A. (2016b). Isolation and identification of α-Endosulfan degrading bacteria from insect microflora. Turkish Journal of Agriculture-Food Science and Technology, 4(4), 248-254.
  • Ozdal, M. (2019). A new strategy for the efficient production of pyocyanin, a versatile pigment, in Pseudomonas aeruginosa OG1 via toluene addition. 3 Biotech, 9(10), 374.
  • Ozdal, M., Ozdal, O. G., Algur, O. F., & Kurbanoglu, E. B. (2017). Biodegradation of α-endosulfan via hydrolysis pathway by Stenotrophomonas maltophilia OG2. 3 Biotech, 7(2), 113.
  • Pietri, J. E., & Liang, D. (2018). The Links Between Insect Symbionts and Insecticide Resistance: Causal Relationships and Physiological Tradeoffs. Annals of the Entomological Society of America, 111(3), 92-97.
  • Pietri, J. E., Tiffany, C., & Liang, D. (2018). Disruption of the microbiota affects physiological and evolutionary aspects of insecticide resistance in the German cockroach, an important urban pest. PloS One, 13(12), e0207985.
  • Pourbabaee, A. A., Soleymani, S., Farahbakhsh, M., & Torabi, E. (2018). Biodegradation of diazinon by the Stenotrophomonas maltophilia PS: pesticide dissipation kinetics and breakdown characterization using FTIR. International Journal of Environmental Science and Technology, 15(5), 1073-1084.
  • Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Megharaj, M. (2019). Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance? Science of The Total Environment, 654, 177-189.
  • Ramu, S., & Seetharaman, B. (2014). Biodegradation of acephate and methamidophos by a soil bacterium Pseudomonas aeruginosa strain Is-6. Journal of Environmental Science and Health, Part B, 49(1), 23-34.
  • Song, H., Zhou, Z., Liu, Y., Deng, S., & Xu, H. (2015). Kinetics and mechanism of fenpropathrin biodegradation by a newly isolated Pseudomonas aeruginosa sp. strain JQ-41. Current Microbiology, 71(3), 326-332.
  • Tang, J., Liu, B., Shi, Y., Zeng, C. Y., Chen, T. T., Zeng, L., & Zhang, Q. (2018). Isolation, identification, and fenvalerate-degrading potential of Bacillus licheniformis CY-012. Biotechnology & Biotechnological Equipment, 32(3), 574-582.
  • Xia, X., Zheng, D., Zhong, H., Qin, B., Gurr, G. M., Vasseur, L., Lin H., Bai J., He, W., & You, M. (2013). DNA sequencing reveals the midgut microbiota of diamondback moth, Cimex xylostella (L.) and a possible relationship with insecticide resistance. PLoS One. 8(7): e68852.
  • Yang, F., Jiang, Q., Zhu, M., Zhao, L., & Zhang, Y. (2017). Effects of biochars and MWNTs on biodegradation behavior of atrazine by Acinetobacter lwoffii DNS32. Science of the Total Environment, 577, 54-60.
  • Zhan, H., Wang, H., Liao, L., Feng, Y., Fan, X., Zhang, L., & Chen, S. (2018). Kinetics and novel degradation pathway of permethrin in Acinetobacter baumannii ZH-14. Frontiers in Microbiology, 9, 98.
  • Zhang, H., Zhang, Y., Hou, Z., Wang, X., Wang, J., Lu, Z., Zhao, X., Sun, F., & Pan, H. (2016). Biodegradation potential of deltamethrin by the Bacillus cereus strain Y1 in both culture and contaminated soil. International Biodeterioration & Biodegradation, 106, 53-59.
  • Zhao, J., Chi, Y., Liu, F., Jia, D., & Yao, K. (2015). Effects of two surfactants and beta-cyclodextrin on beta-cypermethrin degradation by Bacillus licheniformis B-1. Journal of Agricultural and Food Chemistry, 63(50), 10729-10735.
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0003-3460-3638
Author: Özlem GÜR ÖZDAL (Primary Author)
Institution: ATATÜRK ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0001-6447-3454
Author: Ömer Faruk ALGUR
Institution: ATATÜRK ÜNİVERSİTESİ, FEN FAKÜLTESİ
Country: Turkey


Dates

Publication Date : April 15, 2020

APA Gür Özdal, Ö , Algur, Ö . (2020). Isolation and identification of the pyrethroid insecticide deltamethrin degrading bacteria from insects. Avrupa Bilim ve Teknoloji Dergisi , (18) , 905-910 . DOI: 10.31590/ejosat.677008