Year 2020, Volume , Issue 18, Pages 206 - 212 2020-04-15

Farklı Formlardaki Ginkgo biloba’nın Antioksidan Özelliklerinin Belirlenmesi

Önder AYBASTIER [1]


Ginkgo biloba hem geleneksel hem de modern tıpta kullanılan ticari olarak önemli bir bitkidir. Dünyada ve ülkemizde ilaç, gıda takviyesi ve yaprak olmak üzere 3 farklı formda satışa sunulmaktadır. Bu çalışmada her 3 formdaki numunenin asitli ve asitsiz ortamda ultrasonik ekstraksiyonu gerçekleştirilerek antioksidan özellikleri incelenmiştir. Ekstraktların antioksidan kapasitesi ve toplam fenolik madde içeriği sırasıyla ABTS ve Folin-Ciocalteu yöntemleri ile incelenmiştir. Ayrıca HPLC analizleri de yapılarak içerdikleri antioksidan maddeler tespit edilmiştir. Ginkgo biloba bitkisinin en yüksek miktarda içerdiği antioksidan maddenin bir flavonoid glikozit olan rutin olduğu belirlenmiştir. Çalışmanın sonucunda, ilaç formundaki ürünün gıda takviyesi ve yaprak formundaki ürünlerden daha iyi antioksidan özelliklere sahip olduğu ortaya konulmuştur.
Antioksidan, Ginkgo biloba, gıda takviyesi
  • Aybastıer Ö, Şahin S, Demir C, 2013. Response Surface Optimized Ultrasonic-Assisted Extraction of Quercetin and Isolation of Phenolic Compounds From Hypericum perforatum L. by Column Chromatography. Separation Science and Technology, 48: 1665-1674.
  • Balasundram N., Sundram K, Samman S, 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99: 191–203.
  • Boyle SP, Dobson VL, Duthie SJ, Hinselwood DC, Kyle JAM, Collins AR, Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. European Journal of Clinical Nutrition, 54: 774-782.
  • Chan PC, Xia Q, Fu PP, 2007. Ginkgo Biloba Leave Extract: Biological, Medicinal, and Toxicological Effects. Journal of Environmental Science and Health Part C, 25: 211–244.
  • DeFeudis FV, Drieu K, 2000. Ginkgo Biloba Extract (EGb 761) and CNS Functions: Basic Studies and Clinical Applications. Current Drug Targets, 1: 25-58.
  • Dent M, Uzelac VD, Garofulic IE, Bosiljkov T, Jezek D, Brncic M, 2015. Comparison of Conventional and Ultrasound-assisted Extraction Techniques on Mass Fraction of Phenolic Compounds from Sage (Salvia officinalis L.). Chemical and Biochemical Engineering Quarterly, 29(3): 475-484.
  • Goh LM, Barlow PJ, 2002. Antioxidant capacity in Ginkgo biloba. Food Research International, 35: 815–820.
  • Güleç M, Yılmaz R, Iraz M, Ağlamış S, Söğüt S, 2004. Sisplatin Nefrotoksisitesi Oluşturulan Sıçanların Plazma Glutatyon Peroksidaz, Süperoksit Dismutaz, Adenozin Deaminaz Aktiviteleri ve Nitrik Oksit Seviyelerine Ginkgo Biloba Ekstraktının Etkileri. Türkiye Klinikleri, 24: 585-591.
  • Hohmann N, Wolf EM, Rigault P, Zhou W, Kiefer M, Zhao Y, Fu CX, Koch MA, 2018. Ginkgo biloba’s footprint of dynamic Pleistocene history dates back only 390,000 years ago. BMC Genomics, 19:299.
  • Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y, 2016. Quercetin, Inflammation and Immunity. Nutrients, 8: 167.
  • Liu C, Liu S, Zhang L, Wang X, Ma L, 2018. Partition Behavior in Aqueous Two-Phase System and Antioxidant Activity of Flavonoids from Ginkgo biloba. Applied Sciences, 8: 2058.
  • Mattila, P, Kumpulainen, J, 2002. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. Journal of Agricultural and Food Chemistry 50: 3660-3667.
  • Moco S, Capanoglu E, Tukinov Y, Bino R, Boyacioglu D, Hall RD, Vervoort J, De Vos R. 2007. Tissue specia-lization at the metabolite level is perceived during the development of tomato fruit. Journal of Experimental Botany, 58: 4131-4146.
  • Montaño JMC, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M, 2011. A Review on the Dietary Flavonoid Kaempferol. Mini-Reviews in Medicinal Chemistry, 11, 298-344.
  • Nakanishi K, 2005. Terpene trilactones from Gingko biloba: From ancient times to the 21st century. Bioorganic & Medicinal Chemistry, 13: 4987–5000.
  • Omidkhoda SF, Razavi BM, Hosseinzadeh H, 2019. Protective effects of Ginkgo biloba L. against natural toxins, chemical toxicities, and radiation: A comprehensive review. Phytotherapy Research, 33: 2821–2840.
  • Pietta P, Simonetti P, Gardana C, Mauri P, 2000. Trolox equivalent antioxidant capacity (TEAC) of Ginkgo biloba flavonol and Camellia sinensis catechin metabolites. Journal of Pharmaceutical and Biomedical Analysis, 23: 223-226.
  • Pohl F, Lin PKT, 2018. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules, 23: 3283.
  • Rouse J, 1998. Ginkgo biloba: Mind, Mood, and Memory. Journal of Applied Nutritional Science, 6 (7):1-2.
  • Shahidi F, Yeo JD, 2016. Insoluble-Bound Phenolics in Food. Molecules, 21: 1216.
  • Shu Z, Shar AH, Shahen M, Wang H, Alagawany M, El-Hack MEA, Kalhoro SA, Rashid M, Shar PA, 2019. Pharmacological Uses of Ginkgo biloba Extracts for Cardiovascular Disease and Coronary Heart Diseases. International Journal of Pharmacology, 15: 1-9.
  • Singleton VL, Orthofer R, Lamuela-Raventos RM, 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299: 152–178.
  • Şahin S, Aybastıer Ö, Işık E, 2013. Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chemistry, 141: 1361-1368.
  • Tanase C, Cosarca S, Muntean DL, 2019. A Critical Review of Phenolic Compounds Extracted from the Bark of Woody Vascular Plants and Their Potential Biological Activity. Molecules, 24: 1182.
  • Viskupicova J, Ondrejovic M, Sturdik E. 2008. Bioavailability and metabolism of flavonoids. Journal of Food Nutrition and Research 47(4): 151–162
  • Walkowiak A, Ledziński L, Zapadka M, Kupcewicz B, 2019. Detection of adulterants in dietary supplements with Ginkgo biloba extract by attenuated total reflectance Fourier transform infrared spectroscopy and multivariate methods PLS-DA and PCA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 208: 222–228
  • Wang J, Fang X, Ge L, Cao F, Zhao L, Wang Z, Xiao W, 2018. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. Plos One, 13(5): e0197563.
  • Xiao J, 2017. Dietary flavonoid aglycones and their glycosides: Which show betterbiological significance? Crıtıcal Reviews in Food Science and Nutrition, 57(9): 1874-1905.
  • Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB, 2017. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. International Journal of Molecular Sciences, 18(96).
  • Yang C, Xu YR, Yao WX, 2002. Extraction of Pharmaceutical Components from Ginkgo biloba Leaves Using Supercritical Carbon Dioxide. Journal of Agricultural and Food Chemistry, 50: 846-849.
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-0380-1992
Author: Önder AYBASTIER (Primary Author)
Institution: Uludağ Üniversitesi Fen-Edebiyat Fakültesi
Country: Turkey


Dates

Publication Date : April 15, 2020

APA Aybastıer, Ö . (2020). Farklı Formlardaki Ginkgo biloba’nın Antioksidan Özelliklerinin Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi , (18) , 206-212 . DOI: 10.31590/ejosat.680343