Year 2020, Volume , Issue 18, Pages 818 - 832 2020-04-15

Patlama Yükleri Altında Güçlendirilmiş Çift Perde Yapısının Dinamik Analizi
Dynamic Analysis of Hardened Double Bulkhead Structure Subjected to Blast Loading

Burak Can OCAKTAN [1] , Özgür DEMİR [2]


Tekne yapısını bölmelere ayırmak için tasarlanan, gemilerin yaralanmaları durumunda tekne gövdesine giren suyu belli bir bölgede tutarak geminin denge durumunu korumasını sağlayan yapı elemanları bütününe su geçirmez perde adı verilir. Su geçirmez perdelerin sayısı ve yapısal dayanım özellikleri belirlenirken göz önüne alınan ana unsur geminin çatışma sonrasında su alması durumunda gemi stabilitesinin korunması ve perdenin bu su basıncını taşıyabilecek dayanım seviyesinde olmasıdır. Savaş gemilerinde ise bu perdeler, başka amaçlarla da kullanılabilmekte ve operasyonel yüklerin yanı sıra bir takım askeri yüklere maruz kalabilmektedirler. Bu çalışmada savaş gemilerinde silah isabeti sonrası kompartıman içinde patlamanın oluşturduğu blast ve parça tesiri etkilerinin azaltılmasına yönelik dizayn edilen güçlendirilmiş çift perde yapısı sadece blast yükleri altında incelenmiştir.
The set of the construction elements which are designed to divide the boat structure into compartments and enable the maintenance of the balance of the boat by keeping the water entering the hull in a certain region in case of any damage is called watertight bulkhead. The main factor taken into consideration while determining the number of watertight bulkheads and their structural strength properties is to protect the stability of the ship in case of filling with water after a collision and to ensure that the bulkhead has a resistance level that can endure this water pressure. In warships, these bulkheads can be used for other purposes and may be exposed to a number of military loads in addition to operational loads. In this study, the hardened double bulkhead structure designed to reduce the effects of blast caused by the explosion in the compartment after the weapon hit on warships and fragmentation effects was examined only under blast loads.
  • Piperakis, A. S. (2012). An Integrated Approach to Naval Ship Survivability in Preliminary Ship Design. PhD Thesis, University College London.
  • Smith, P. D.,& Hetherington,J.G. (2003). Blast and Ballistic Loading of Structures. Eastbourne, Great Britain, Antony Rowe Ltd.
  • Rebelo, H.B.,& Corneliu, C. (2017). A Comparison between Three Air Blast Simulation Techniques in LS-DYNA. 11th European LS-DYNA Conferance, Salzburg.
  • Randers-Pehrson, G., & Bannister,K.A. (1997). Airblast Loading Model for DYNA2D and DYNA3D. US Army Research Laboratory: Aberdeen Proving Ground. Aberdeen
  • Erdik, A., & Uçar,V. (2018). On evaluation and comparison of blast loading methods used in numerical simulations. Sakarya University Journal of Science.
  • Kingery, C. N. & Bulmash,G. (1984). Airblast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst. Ballistic Research Laboratory: Aberdeen Proving Ground, Aberdeen
  • U.S. Army Corps of Engineers, N.F.E.C., Air Force Civil Engineering Support Agency, (2002). Design and analysis of hardened structures to conventional weapons effects. Department of the Army: US Army Corps of Engineers and Defense Special Weapons Agency, Washington, DC.
  • Hallquist, J. (2006). LS-DYNA Theory Manual. Livermore Software Technology Corporation.
  • Lam, N. , Mendis, P. & Ngo, T. (2007). EJSE Special Issue: Loading on Structures: Editorial. Electronic Journal of Structural Engineering.
  • Donea, J. , Giuliani, S. & Halleux, J. P. (1982). An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 33(1-3): p.689-723.
  • Kozak, A. L.,et al. (2016). Validation of the ALE Methodology by Comparison with the Experimental Data Obtained from a Sloshing Tank.” 14th International LS-DYNA Users Conferance, Detroit.
  • LS-DYNA Aerospace Working Group, (2013). Modeling Guidelines Document.Version 13-1.
  • Slavik, T. P. (2009). A Coupling of Empirical Explosive Blast Loads to ALE Air Domains in LS-DYNA. 7th European LS-DYNA Conference. Salzburg.
  • Schwer, L., Teng, H. & Souli, M. (2015). LS-DYNA Air Blast Techniques: Comparisons with Experiments for Close-in Charges. 10th European LS-DYNA Conference, Würzburg.
  • Han, Y. & Liu, H. (2015). Finite Element Simulation of Medium-Range Blast Loading using LS-DYNA. Shock and Vibration.
  • Korkut, S. (2019). “Sonlu Elemanlar Metodu'', Retrieved from https://www.serdarkorkut.com/2017/05/09/sonlu-elemanlar-metodu/ (Access Date: 15.12.2019).
  • Murugesan, M. & Jung, D. W. (2019). Johnson-Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications. Materials, Basel.
  • Klepaczko, J. R., Rusinek, A. , Rodríguez-Martínez, J. A. , Pecherski, R. B.& Arias, A. (2009). Modelling of Thermo-Viscoplastic Behaviour of DH-36 and Weldox 460-E Structural Steels at Wide Ranges of Strain Rates and Temperatures, Comparison of Constitutive Relations for Impact Problems. Mechanics of Materials.
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-4576-0519
Author: Burak Can OCAKTAN
Institution: Yildiz Technical University
Country: Turkey


Orcid: 0000-0003-0865-0684
Author: Özgür DEMİR (Primary Author)
Institution: Yildiz Technical University
Country: Turkey


Dates

Publication Date : April 15, 2020

APA Ocaktan, B , Demi̇r, Ö . (2020). Dynamic Analysis of Hardened Double Bulkhead Structure Subjected to Blast Loading . Avrupa Bilim ve Teknoloji Dergisi , (18) , 818-832 . DOI: 10.31590/ejosat.691443