Research Article
BibTex RIS Cite

Removal of Amoxicillin in Aqueous Solution by an Activated Carbon: Kinetic and Equilibrium Studies

Year 2020, Issue: 18, 833 - 839, 15.04.2020
https://doi.org/10.31590/ejosat.697040

Abstract

Amoxicillin (AMX) is a commercial antibiotic commonly consumed due to its wide spectrum of use against a wide variety of microorganisms and its high resistance to bacteria. For this reason, it is a compound that is especially important to be removed from environmental waters. In this study, commercially activated carbon was used to remove AMX from the aqueous phase. The effect of pH, initial AMX concentration, temperature and contact time parameters affecting the adsorption process on the adsorbed AMX amount was determined. The effect of the initial AMX concentration was examined in the range of 3-500 mg / L. The pH effect on adsorption was investigated in the range of 2-10. Adsorption processes were performed for three different temperatures (10 °C, 25 °C and 40 °C). The maximum AMX adsorption capacity was calculated as 223.9 mg / g (25 ° C) in an aqueous solution with a pH of 3. Adsorption was determined to have an endothermic nature and an increase in adsorption capacity was observed with increasing temperature. Adsorption isotherms compatible with Langmuir isotherm. By evaluating the kinetic data, it was found to be compatible with the pseudo-second degree kinetic model. Activated carbon was also used effectively for AMX removal from tap water contaminated with AMX.

References

  • Al-Gheethi, A.A.S., Ismail, N. (2014). “Biodegradation of pharmaceutical wastes in treated sewage effluents by Bacillus btilis 1556WTNC”. Environ. Process. 1, 459-481.
  • Andreozzi, R., Canterino, M., Marotta, R., Paxeus, N. (2005). “Antibiotic removal from wastewaters: the ozonation of amoxicillin”, J Hazard Mater 122 (3), 243–250.
  • Freundlich, H., Heller, W. (1939). “The adsorption of cis- and transazobenzene”, J. Am. Chem. Soc. 61, 2228–2230.
  • Garoma, T,, Umamaheshwar, S.H., and Mumper, A. (2010). “Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation”, Chemosphere 79, 814-20.
  • Hayati, B., Maleki, A., Najafi, F., Gharibi, F., McKay, G., Gupta, V.K., Puttaiah, S.H., Marzban, N. (2018). “Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems”, Chem. Eng. J., 346, 258-270.
  • Hughes, S.R., Kay, P., Brown, L.E. (2016). “Impact of anti-inflammatories, beta-blockers and antibiotics on leaf litter breakdown in freshwaters”, Environ Sci Pollut Res 23 (4), 3956–3962.
  • Langmuir, I. (1916). “The constitution and fundamental properties of solids and liquids. Part I. Solids”, J. Am. Chem. Soc., 38, 2221-2295.
  • Langmuir, I. (1918). “The adsorption of gases on plane surfaces of glass, mica and platinum”. J. Am. Chem. Soc. 40, 1361–1403.
  • Li, S., Li, X., Wang, D. (2004). “Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics”, Sep Purif Technol 34, 109–114.
  • Li, H., Hu, J., Cao, Y., Li, X., Wang, X. (2017). “Development and assessment of a functional activated fore-modified bio-hydrochar for amoxicillin removal” Bioresource Technology 246, 168–175.
  • Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C., Fatta-Kassinos, D. (2013). “Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review”, Water Res. 47 (3), 957-995.
  • Pan, X., Deng, C., Zhang, D., Wang, J., Mu, G., Chen, Y. (2008). “Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests”, Aquat Toxicol 89 (4), 207–213.
  • Polanyi M. (1932). “Section III- Theories of the adsorption of gases. A general survey and some additional remarks. Introductory paper to section III”, Trans Faraday Soc. 28, 316–333.
  • Redding, A.M., Cannon, F.S., Snyder, S.A., Vanderford B.J. (2009). “A QSARlike analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons”, Water Res., 43 (15), 3849-3861.
  • Trovó, A.G., Melo, S.A.S., Nogueira, R.F.P. (2008). “Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by thephoto-Fenton process—application to sewage treatment plant effluent”, J Photochem Photobiol Chem 198 (2–3), 215–220.
  • WHO (2014), Antibiotics Resistance Global Report on Surveillance, World Health Organization Press, Geneva. Yu, F., Li, Y., Han, S., and Ma, J. (2016). “Adsorptive removal of antibiotics from aqueous solution using carbon materials”, Chemosphere 153, 365-85.
  • Zandipak, R., Sobhanardakani, S. (2018). “Novel mesoporous Fe3O4/ SiO2/CTAB–SiO2 as an effective adsorbent for the removal of amoxicillin and tetracycline from water”, Clean Technologies and Environmental Policy, 20, 871–885.

Aktif Karbon ile Sulu Çözeltilerden Amoksisilin Giderimi: Kinetik ve Denge Çalışmaları

Year 2020, Issue: 18, 833 - 839, 15.04.2020
https://doi.org/10.31590/ejosat.697040

Abstract

Amoksisilin (AMX), çok çeşitli mikroorganizmalara karşı geniş bir spektrumda kullanımı ve bakterilere karşı yüksek direnç göstermesi nedeniyle yaygın olarak tüketilen ticari bir antibiyotiktir. Bu nedenle özellikle çevresel sulardan uzaklaştırılması önemli olan bir bileşiktir. Bu çalışmada, ticari olarak temin edilen aktif karbon, sulu fazdan AMX uzaklaştırılması için kullanıldı. Adsorpsiyon prosesini etkileyen pH, başlangıç AMX derişimi, sıcaklık ve temas süresi parametrelerinin adsorplanan AMX miktarına etkisi incelendi. Başlangıç AMX derişiminin etkisi 3-500 mg/L derişim aralığında incelendi. Adsorpsiyona pH etkisi ise 2-10 aralığında araştırıldı. Adsorpsiyon işlemleri üç farklı sıcaklık için (10°C, 25°C and 40°C) gerçekleştirildi. Maksimum AMX adsorpsiyon kapasitesi pH değeri 3,0 olan sulu çözeltide 223,9 mg/g (25°C) olarak hesaplandı. Adsorpsiyonun endotermik bir doğası olduğu belirlendi ve artan sıcaklıkla adsorpsiyon kapasitesinde artış gözlemlendi. Adsorpsiyon izotermelerinin Langmuir izotermi ile uyum sağladı. Kinetik verilerin değerlendirilmesi ile yalancı-ikinci derece kinetik modele uyum gösterdiği bulundu. Aktif karbon ayrıca AMX ile kirletilmiş çeşme sularından AMX giderimi için etkin olarak kullanıldı.

References

  • Al-Gheethi, A.A.S., Ismail, N. (2014). “Biodegradation of pharmaceutical wastes in treated sewage effluents by Bacillus btilis 1556WTNC”. Environ. Process. 1, 459-481.
  • Andreozzi, R., Canterino, M., Marotta, R., Paxeus, N. (2005). “Antibiotic removal from wastewaters: the ozonation of amoxicillin”, J Hazard Mater 122 (3), 243–250.
  • Freundlich, H., Heller, W. (1939). “The adsorption of cis- and transazobenzene”, J. Am. Chem. Soc. 61, 2228–2230.
  • Garoma, T,, Umamaheshwar, S.H., and Mumper, A. (2010). “Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation”, Chemosphere 79, 814-20.
  • Hayati, B., Maleki, A., Najafi, F., Gharibi, F., McKay, G., Gupta, V.K., Puttaiah, S.H., Marzban, N. (2018). “Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems”, Chem. Eng. J., 346, 258-270.
  • Hughes, S.R., Kay, P., Brown, L.E. (2016). “Impact of anti-inflammatories, beta-blockers and antibiotics on leaf litter breakdown in freshwaters”, Environ Sci Pollut Res 23 (4), 3956–3962.
  • Langmuir, I. (1916). “The constitution and fundamental properties of solids and liquids. Part I. Solids”, J. Am. Chem. Soc., 38, 2221-2295.
  • Langmuir, I. (1918). “The adsorption of gases on plane surfaces of glass, mica and platinum”. J. Am. Chem. Soc. 40, 1361–1403.
  • Li, S., Li, X., Wang, D. (2004). “Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics”, Sep Purif Technol 34, 109–114.
  • Li, H., Hu, J., Cao, Y., Li, X., Wang, X. (2017). “Development and assessment of a functional activated fore-modified bio-hydrochar for amoxicillin removal” Bioresource Technology 246, 168–175.
  • Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C., Fatta-Kassinos, D. (2013). “Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review”, Water Res. 47 (3), 957-995.
  • Pan, X., Deng, C., Zhang, D., Wang, J., Mu, G., Chen, Y. (2008). “Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests”, Aquat Toxicol 89 (4), 207–213.
  • Polanyi M. (1932). “Section III- Theories of the adsorption of gases. A general survey and some additional remarks. Introductory paper to section III”, Trans Faraday Soc. 28, 316–333.
  • Redding, A.M., Cannon, F.S., Snyder, S.A., Vanderford B.J. (2009). “A QSARlike analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons”, Water Res., 43 (15), 3849-3861.
  • Trovó, A.G., Melo, S.A.S., Nogueira, R.F.P. (2008). “Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by thephoto-Fenton process—application to sewage treatment plant effluent”, J Photochem Photobiol Chem 198 (2–3), 215–220.
  • WHO (2014), Antibiotics Resistance Global Report on Surveillance, World Health Organization Press, Geneva. Yu, F., Li, Y., Han, S., and Ma, J. (2016). “Adsorptive removal of antibiotics from aqueous solution using carbon materials”, Chemosphere 153, 365-85.
  • Zandipak, R., Sobhanardakani, S. (2018). “Novel mesoporous Fe3O4/ SiO2/CTAB–SiO2 as an effective adsorbent for the removal of amoxicillin and tetracycline from water”, Clean Technologies and Environmental Policy, 20, 871–885.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Elif Tümay Özer 0000-0002-5225-0146

Publication Date April 15, 2020
Published in Issue Year 2020 Issue: 18

Cite

APA Tümay Özer, E. (2020). Aktif Karbon ile Sulu Çözeltilerden Amoksisilin Giderimi: Kinetik ve Denge Çalışmaları. Avrupa Bilim Ve Teknoloji Dergisi(18), 833-839. https://doi.org/10.31590/ejosat.697040