Research Article
BibTex RIS Cite

SIMO Haberleşme Kanallarında Enerji Tabanlı İşbirlikli Spektrum Algılama

Year 2020, Ejosat Special Issue 2020 (ARACONF), 96 - 104, 01.04.2020
https://doi.org/10.31590/ejosat.araconf13

Abstract

Son yıllarda haberleşme sistemlerinde yaşanan hızlı gelişim süreci, kablosuz haberleşme uygulamalarının sayısını oldukça artırmış durumdadır. Kablosuz haberleşme sistemlerinde gerçekleşen bu gelişim, beraberinde spektrumda daha fazla band genişliği ihtiyacını da gerektirmektedir. Band genişliği talebinin artışı ise spektrum kıtlığı problemini gün yüzüne çıkarmıştır. Spektrum kıtlığı problemini aşmak için en geçerli yol, sabit frekans tahsisi yerine fırsatçı spektrum kullanımına geçilmesidir. Spektrumu fırsatçı kullanarak dinamik spektrum atama yöntemlerini uygulamak ise Bilişsel Radyo sistemlerinin temel amacıdır. Bilişsel Radyo bulunduğu spektrum ortamını algılayarak boş spektrum bölgelerini belirleyerek bu bölgeleri ikincil kullanıcıların erişimine açmaktadır. Ikincil kullanıcı spektrum kullanımı için belirli bir ücret ödemeyen veya bir spektrum bölgesini yasal olarak kullanma hakkına sahip olmayan kişidir. Aynı şekilde lisanslı kulanıcı ise belirli bir spektrum bölgesini yasal olarak kullanma hakkına sahip kişi olarak tanımlanmaktadır. Bu tanımlar doğrultusunda yapılan bu çalışmada Bilişsel Radyo sistemleri için spektrum algılama yöntemlerinden biri olan, Enerji Tabanlı Spektrum Algılama için, adaptif bir spektrum algılama yöntemi önerilmiştir. Ayrıca önerilen yöntemde gürültü seviyesinin tahmini için farklı bir kestirim yöntemi önerilmektedir. Bilindiği üzere enerji tabanlı algılama yöntemlerinin en büyük dezavantajı gürültü belirsizliği faktörünün algılama performansı üzerinde oluşturduğu olumsuz etkidir. Bu olumsuz etkiyi azaltmak için önerilen yöntemde ortamda bulunan gürültü, Marhenko Pastur teoremi ile tahmin edilerek, eşik değeri adaptif şekilde değiştirilmektedir. Önerilen yöntemin Rayleigh sönümlemeli tek giriş- çok çıkışlı sistemlerde benzetim çalışmaları yapılmıştır. Benzetim çalışmaları işbirlikli ve işbirliksiz algılama yöntemleri için farklı gürültü seviyeleri için incelenmiştir. Ayrıca benzetim sonuçlarında algılama teorisi çalışmaları için sıklıkla kullanılan ROC eğrilerine de yer verilmektedir. Böylece önerilen algılama yönteminde geleneksel enerji algılama yöntemine göre olumlu sonuçlar gözlemlenmiştir.

References

  • Abdalrazik, A., Soliman, H., Abdelkader, M. F., & Abuelfadl, T. M. (2016). Power performance enhancement of underlay spectrum sharing using microstrip patch ESPAR antenna. Advances in Electrical and Computer Engineering, 2016-Septe(1), 61–68. https://doi.org/10.1109/WCNC.2016.7565095
  • Ahmad, A. W., Yang, H., & Lee, C. (2015). Maximizing throughput with wireless spectrum sensing network assisted cognitive radios. International Journal of Distributed Sensor Networks, 2015, 1–10. https://doi.org/10.1155/2015/195794
  • Charan, C., & Paney, R. (2016). Eigenvalue based double threshold spectrum sensing under noise uncertainty for cognitive radio. Optik, 127(15), 5968–5975. https://doi.org/10.1016/j.ijleo.2016.04.049
  • Çiflikli, C., & Ilgin, F. Y. (2018). Covariance Based Spectrum Sensing with Studentized Extreme Eigenvalue. Technical Gazette, 25(6), 100–106.
  • Commission, F. C. (2002). Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems. First Report and Order in ET …. https://doi.org/10.1017/CBO9781107415324.004
  • Dahlman, E., Parkvall, S., & Skold, J. (2013). 4G: LTE/LTE-Advanced for Mobile Broadband. 4G: LTE/LTE-Advanced for Mobile Broadband. https://doi.org/10.1016/C2013-0-06829-6
  • De Vito, L. (2013). Methods and technologies for wideband spectrum sensing. Measurement: Journal of the International Measurement Confederation, 46(9), 3153–3165. https://doi.org/10.1016/j.measurement.2013.06.013
  • Dibal, P. Y., Onwuka, E. N., Agajo, J., & Alenoghena, C. O. (2018). Application of wavelet transform in spectrum sensing for cognitive radio: A survey. Physical Communication, 28, 45–57. https://doi.org/10.1016/j.phycom.2018.03.004
  • Edelman, A. (2005). Random matrix theory. Acta Numerica, 1–65. https://doi.org/10.1017/S0962492904000236
  • Erpek, T., Steadman, K., & Jones, D. (2007). CR..2 A..Spectrum Occupancy Measurements: Dublin Ireland Collected On April 16-18 , 2007. In Technical Report, Shared Spectrum Company Nov 2007 (pp. 1–34). Vienna: Shared Spectrum Company.
  • He, Y., Ratnarajah, T., Yousif, E. H. G., Xue, J., & Sellathurai, M. (2016). Performance analysis of multi-antenna GLRT-based spectrum sensing for cognitive radio. Signal Processing, 120, 580–593. https://doi.org/10.1016/j.sigpro.2015.10.018
  • Kortun, A., Ratnarajah, T., Sellathurai, M., Zhong, C., & Papadias, C. B. (2011). On the performance of eigenvalue-based cooperative spectrum sensing for cognitive radio. IEEE Journal of Selected Topics in Signal Processing, 5(1), 49–55. https://doi.org/10.1109/JSTSP.2010.2066957
  • Kortun, Ayse, Ratnarajah, T., Sellathurai, M., Liang, Y. C., & Zeng, Y. (2014). On the eigenvalue-based spectrum sensing and secondary user throughput. IEEE Transactions on Vehicular Technology, 63(3), 1480–1486. https://doi.org/10.1109/TVT.2013.2282344
  • Li, C. M., & Lu, S. H. (2016). Energy-Based Maximum Likelihood Spectrum Sensing Method for the Cognitive Radio. Wireless Personal Communications, 89(1), 289–302. https://doi.org/10.1007/s11277-016-3266-0
  • Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal on Selected Topics in Signal Processing, 8(5), 742–758. https://doi.org/10.1109/JSTSP.2014.2317671
  • Luo, X., Wang, X., Zhang, M., & Guan, X. (2019). Distributed detection and isolation of bias injection attack in smart energy grid via interval observer. Applied Energy, 256, 113703. https://doi.org/10.1016/J.APENERGY.2019.113703
  • Mitola, J. (2006). Cognitive Radio Architecture. In Cognitive Radio Technology (pp. 435–500). Newnes. https://doi.org/10.1016/B978-075067952-7/50015-5
  • Mitola, J., & Maguire, G. Q. (2001). Cognitive radio: Making software radios more personal. In Software Radio Technologies: Selected Readings. https://doi.org/10.1109/9780470546444.ch4
  • Mohammadi, A., Javadi, S. H., Ciuonzo, D., Persico, V., & Pescapé, A. (2019). Distributed detection with fuzzy censoring sensors in the presence of noise uncertainty. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.03.044
  • Pillay, N., & Xu, H. J. (2012). Blind eigenvalue-based spectrum sensing for cognitive radio networks. IET Communications, 6(11), 1388. https://doi.org/10.1049/iet-com.2011.0506
  • S, A. P., & Jayasheela, M. (2012). Cyclostationary feature detection in cognitive radio using different modulation schemes. International Journal of Computer Applications, 47(21), 975–8887. https://doi.org/10.7763/IJFCC.2013.V2.249
  • Shi-Qi, L., Bin-Jie, H., & Xian-Yi, W. (2012). Hierarchical cooperative spectrum sensing based on double thresholds energy detection. Communications Letters, IEEE, 16(7), 1096–1099. https://doi.org/10.1109/LCOMM.2012.050112.120765
  • Szczerba, K., Westbergh, P., Agrell, E., Karlsson, M., Andrekson, P. A., & Larsson, A. (2013). Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links. Journal of Lightwave Technology, 31(22), 3525–3534. https://doi.org/10.1109/JLT.2013.2285468
  • Verma, P., & Singh, B. (2016). Overcoming sensing failure problem in double threshold based cooperative spectrum sensing. Optik, 127(10), 4200–4204. https://doi.org/10.1016/j.ijleo.2016.01.108
  • Yaskov, P. (2016). A short proof of the Marchenko–Pastur theorem. Comptes Rendus Mathematique, 354(3), 319–322. https://doi.org/10.1016/J.CRMA.2015.12.008
  • Yonghong Z., Ying-Chang L., & Rui Z. (2008). Blindly combined energy detection for spectrum sensing in cognitive radio. IEEE Signal Processing Letters, 15(1), 649–652. https://doi.org/10.1109/LSP.2008.2002711
  • Zeng, Y., & Liang, Y. C. (2009). Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6), 1784–1793. https://doi.org/10.1109/TCOMM.2009.06.070402

Energy-Based Cooperative Spectrum Sensing In SIMO Communication Channels

Year 2020, Ejosat Special Issue 2020 (ARACONF), 96 - 104, 01.04.2020
https://doi.org/10.31590/ejosat.araconf13

Abstract

The rapid development process in communication systems in recent years has increased the number of wireless communication applications considerably. This development in wireless communication systems requires the need for more bandwidth in the spectrum. The increase in bandwidth demand brought up the problem of spectrum shortage. The most valid way to overcome the problem of spectrum shortage is to switch to the use of opportunistic spectrum instead of fixed frequency allocation. Using spectrum opportunistically is the main purpose of Cognitive Radio systems. Cognitive Radio detects the spectrum environment in which it is located and determines the empty spectrum regions and makes these regions accessible to secondary users. The secondary user is the person who does not pay a specific fee for the use of the spectrum or does not have the legal right to use a spectrum region. Similarly, the licensed user is defined as the person who has the legal right to use a certain spectrum region. An adaptive spectrum sensing method for Energy Based Spectrum Sensing, which is one of the spectrum sensing methods for Cognitive Radio systems, is proposed in this study conducted in line with these definitions. In addition, a different estimation method is proposed for the estimation of the noise level in the proposed method. As it is known, the biggest disadvantage of energy based sensing methods is the negative effect of noise uncertainty factor on sensing performance. In the proposed method to reduce this negative effect, the noise in the environment is estimated by Marhenko Pastur theorem and the threshold value is adaptively changed. Simulation studies of single-multi-output systems with Rayleigh damping are proposed. Simulation studies have been studied for different noise levels for cooperative and non-cooperative detection methods. Also included in the simulation results are ROC curves that are frequently used for detection theory studies. Thus, positive results were observed in the proposed perception method compared to traditional energy perception method

References

  • Abdalrazik, A., Soliman, H., Abdelkader, M. F., & Abuelfadl, T. M. (2016). Power performance enhancement of underlay spectrum sharing using microstrip patch ESPAR antenna. Advances in Electrical and Computer Engineering, 2016-Septe(1), 61–68. https://doi.org/10.1109/WCNC.2016.7565095
  • Ahmad, A. W., Yang, H., & Lee, C. (2015). Maximizing throughput with wireless spectrum sensing network assisted cognitive radios. International Journal of Distributed Sensor Networks, 2015, 1–10. https://doi.org/10.1155/2015/195794
  • Charan, C., & Paney, R. (2016). Eigenvalue based double threshold spectrum sensing under noise uncertainty for cognitive radio. Optik, 127(15), 5968–5975. https://doi.org/10.1016/j.ijleo.2016.04.049
  • Çiflikli, C., & Ilgin, F. Y. (2018). Covariance Based Spectrum Sensing with Studentized Extreme Eigenvalue. Technical Gazette, 25(6), 100–106.
  • Commission, F. C. (2002). Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems. First Report and Order in ET …. https://doi.org/10.1017/CBO9781107415324.004
  • Dahlman, E., Parkvall, S., & Skold, J. (2013). 4G: LTE/LTE-Advanced for Mobile Broadband. 4G: LTE/LTE-Advanced for Mobile Broadband. https://doi.org/10.1016/C2013-0-06829-6
  • De Vito, L. (2013). Methods and technologies for wideband spectrum sensing. Measurement: Journal of the International Measurement Confederation, 46(9), 3153–3165. https://doi.org/10.1016/j.measurement.2013.06.013
  • Dibal, P. Y., Onwuka, E. N., Agajo, J., & Alenoghena, C. O. (2018). Application of wavelet transform in spectrum sensing for cognitive radio: A survey. Physical Communication, 28, 45–57. https://doi.org/10.1016/j.phycom.2018.03.004
  • Edelman, A. (2005). Random matrix theory. Acta Numerica, 1–65. https://doi.org/10.1017/S0962492904000236
  • Erpek, T., Steadman, K., & Jones, D. (2007). CR..2 A..Spectrum Occupancy Measurements: Dublin Ireland Collected On April 16-18 , 2007. In Technical Report, Shared Spectrum Company Nov 2007 (pp. 1–34). Vienna: Shared Spectrum Company.
  • He, Y., Ratnarajah, T., Yousif, E. H. G., Xue, J., & Sellathurai, M. (2016). Performance analysis of multi-antenna GLRT-based spectrum sensing for cognitive radio. Signal Processing, 120, 580–593. https://doi.org/10.1016/j.sigpro.2015.10.018
  • Kortun, A., Ratnarajah, T., Sellathurai, M., Zhong, C., & Papadias, C. B. (2011). On the performance of eigenvalue-based cooperative spectrum sensing for cognitive radio. IEEE Journal of Selected Topics in Signal Processing, 5(1), 49–55. https://doi.org/10.1109/JSTSP.2010.2066957
  • Kortun, Ayse, Ratnarajah, T., Sellathurai, M., Liang, Y. C., & Zeng, Y. (2014). On the eigenvalue-based spectrum sensing and secondary user throughput. IEEE Transactions on Vehicular Technology, 63(3), 1480–1486. https://doi.org/10.1109/TVT.2013.2282344
  • Li, C. M., & Lu, S. H. (2016). Energy-Based Maximum Likelihood Spectrum Sensing Method for the Cognitive Radio. Wireless Personal Communications, 89(1), 289–302. https://doi.org/10.1007/s11277-016-3266-0
  • Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal on Selected Topics in Signal Processing, 8(5), 742–758. https://doi.org/10.1109/JSTSP.2014.2317671
  • Luo, X., Wang, X., Zhang, M., & Guan, X. (2019). Distributed detection and isolation of bias injection attack in smart energy grid via interval observer. Applied Energy, 256, 113703. https://doi.org/10.1016/J.APENERGY.2019.113703
  • Mitola, J. (2006). Cognitive Radio Architecture. In Cognitive Radio Technology (pp. 435–500). Newnes. https://doi.org/10.1016/B978-075067952-7/50015-5
  • Mitola, J., & Maguire, G. Q. (2001). Cognitive radio: Making software radios more personal. In Software Radio Technologies: Selected Readings. https://doi.org/10.1109/9780470546444.ch4
  • Mohammadi, A., Javadi, S. H., Ciuonzo, D., Persico, V., & Pescapé, A. (2019). Distributed detection with fuzzy censoring sensors in the presence of noise uncertainty. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.03.044
  • Pillay, N., & Xu, H. J. (2012). Blind eigenvalue-based spectrum sensing for cognitive radio networks. IET Communications, 6(11), 1388. https://doi.org/10.1049/iet-com.2011.0506
  • S, A. P., & Jayasheela, M. (2012). Cyclostationary feature detection in cognitive radio using different modulation schemes. International Journal of Computer Applications, 47(21), 975–8887. https://doi.org/10.7763/IJFCC.2013.V2.249
  • Shi-Qi, L., Bin-Jie, H., & Xian-Yi, W. (2012). Hierarchical cooperative spectrum sensing based on double thresholds energy detection. Communications Letters, IEEE, 16(7), 1096–1099. https://doi.org/10.1109/LCOMM.2012.050112.120765
  • Szczerba, K., Westbergh, P., Agrell, E., Karlsson, M., Andrekson, P. A., & Larsson, A. (2013). Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links. Journal of Lightwave Technology, 31(22), 3525–3534. https://doi.org/10.1109/JLT.2013.2285468
  • Verma, P., & Singh, B. (2016). Overcoming sensing failure problem in double threshold based cooperative spectrum sensing. Optik, 127(10), 4200–4204. https://doi.org/10.1016/j.ijleo.2016.01.108
  • Yaskov, P. (2016). A short proof of the Marchenko–Pastur theorem. Comptes Rendus Mathematique, 354(3), 319–322. https://doi.org/10.1016/J.CRMA.2015.12.008
  • Yonghong Z., Ying-Chang L., & Rui Z. (2008). Blindly combined energy detection for spectrum sensing in cognitive radio. IEEE Signal Processing Letters, 15(1), 649–652. https://doi.org/10.1109/LSP.2008.2002711
  • Zeng, Y., & Liang, Y. C. (2009). Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6), 1784–1793. https://doi.org/10.1109/TCOMM.2009.06.070402
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fatih Yavuz Ilgın 0000-0002-7449-4811

Publication Date April 1, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (ARACONF)

Cite

APA Ilgın, F. Y. (2020). SIMO Haberleşme Kanallarında Enerji Tabanlı İşbirlikli Spektrum Algılama. Avrupa Bilim Ve Teknoloji Dergisi96-104. https://doi.org/10.31590/ejosat.araconf13