Research Article
BibTex RIS Cite

Uzayda Yerli Kaynaklar ile Yapı Malzemesi Üretimi

Year 2020, Ejosat Special Issue 2020 (ARACONF), 216 - 223, 01.04.2020
https://doi.org/10.31590/ejosat.araconf27

Abstract

İnşaat mühendisliği; insanlığın başından beri var olan, gelecekte de var olmaya devam edecek olan temel bir mühendisliktir. İnşaat mühendisleri olumsuz koşullara karşı mevcut malzeme ve tekniği kullanarak insanlığa hizmet ederler. İnsanoğlu gidebileceği her yere gider sözüyle birlikte araştırmacılar tarafından uzayda kullanılabilecek yapı malzemelerini üretme çalışmaları da uzun zamandır devam etmektedir. Üretilen yapı malzemelerinin sadece uzay ortamına (yüksek vakum, düşük yerçekimi, vb.) dayanıklı olması değil, aynı zamanda sürdürülebilir olması da gerekmektedir. Uzay inşaat mühendisliğinin temel amaçlarından birisi de uzaydaki yerel olanakları kullanarak yapı malzemesi üretmektir. Bu çalışmada, geçmiş Ay ve Mars regoliti simülasyonları karşılaştırılmıştır. Ülkemizde gerekli simülasyonları yapabilmek için uygun toprakların elde edilebileceği bölgeler belirlenmiştir. Ayrıca, üretilecek simülasyonların sürdürülebilir olması için gereklilikler çalışma sonunda vurgulanmıştır.

References

  • Şimşek, O., Beton ve Beton Teknolojisi Dördüncü Baskı., Seçkin Yayıncılık, Ankara, 2012.
  • Engin, Y., Çimento ve Beton Tarihi. Beton Kalıp İskele Teknolojileri Dergisi, 2017.
  • Shang, H. S., & Yi, T. H. (2013). Freeze-thaw durability of air-entrained concrete. The Scientific World Journal, 2013.
  • Gupta, T., Sharma, R. K., & Chaudhary, S. (2015). Impact resistance of concrete containing waste rubber fiber and silica fume. International Journal of Impact Engineering, 83, 76-87.
  • Xie, J. H., Guo, Y. C., Liu, L. S., & Xie, Z. H. (2015). Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber. Construction and Building materials, 79, 263-272.
  • STEINHOFF, E. A. (1966). The Use of Mars and Phobos to Advance Interplanetary Flight. In Advances in Space Science and Technology (Vol. 8, pp. 347-383). Elsevier.
  • Kanamori, H., Matsumoto, S., & Ishikawad, N. (1991). Long-term properties of mortar exposed to a vacuum. Special Publication, 125, 57-70.
  • Horiguchi, T., Saeki, N., Yoneda, T., Hoshi, T., & Lin, T. D. (1998). Behavior of simulated lunar cement mortar in vacuum environment. In Space 98 (pp. 571-576).
  • Naser, M. Z. (2019). Extraterrestrial construction materials. Progress in Materials Science, 100577.
  • Lee, T. S., Lee, J., & Ann, K. Y. (2015). Manufacture of polymeric concrete on the Moon. Acta Astronautica, 114, 60-64.
  • Grugel, R. N., & Toutanji, H. (2008). Sulfur “concrete” for lunar applications–Sublimation concerns. Advances in Space Research, 41(1), 103-112.
  • Wan, L., Wendner, R., & Cusatis, G. (2016). A novel material for in situ construction on Mars: experiments and numerical simulations. Construction and Building Materials, 120, 222-231.
  • Alexiadis, A., Alberini, F., & Meyer, M. E. (2017). Geopolymers from lunar and Martian soil simulants. Advances in Space Research, 59(1), 490-495.
  • Chen, J., Ding, N., Li, Z., & Wang, W. (2016). Organic polymer materials in the space environment. Progress in Aerospace Sciences, 83, 37-56.
  • Mueller, R. P. (2017). Construction with Regolith.
  • Kuvvet, M., Regolitin kullanım alanları, Ay’da ve Mars’ta regolitin yapı malzemesi olarak kullanımı, regolitten başka elementlerin ve maddelerin çıkarımı. Hava Harp Okulu Havacılık Ve Uzay Teknolojileri Enstitüsü, İstanbul, 2010.
  • Erdoğan, T. Y., Beton, Beşinci Baskı, ODTÜ yayıncılık, Ankara, 2015.
  • Center of Lunar Astreoid Surface Science. Ay ve Mars simülasyonlarının içerikleri. 2014. [Online]. Available: https://sciences.ucf.edu/class/planetary-simulant-database/ .
  • Toklu, Y. C., Çerçevik, A. E., Kandemir, S. Y., & Yayli, M. O. (2017, June). Production of lunar soil simulant in Turkey. In 2017 8th International Conference on Recent Advances in Space Technologies (RAST) (pp. 1-5). IEEE.
  • Ishikawa, Y. (2009). Utilization of Regolith for Manufacturing Construction Material on Mars. In Mars (pp. 543-550). Springer, Berlin, Heidelberg.

Production of Construction Materials with Local Resources in Space

Year 2020, Ejosat Special Issue 2020 (ARACONF), 216 - 223, 01.04.2020
https://doi.org/10.31590/ejosat.araconf27

Abstract

Civil engineering is a fundamental engineering that has existed since the beginning of humanity and will continue to exist in the future. The civil engineers serve humanity against the negative conditions by using available materials and techniques. Researchers have been going on studying to produce construction materials that can be used in space for a long time with this word that people go everywhere they can go. The construction materials produced must not only be resistant to the environment of space (i.e. high vacuum, low gravity, etc.), but must also be sustainable. One of the main purposes of space civil engineering is to produce construction materials using local resources in space. In this study, past Lunar and Martian regolith simulations are compared. In order to make necessary simulations, the regions where the suitable soil can be obtained from in our country are determined. In addition, the requirements for sustainability of the produced simulations are emphasized at the end of the study.

References

  • Şimşek, O., Beton ve Beton Teknolojisi Dördüncü Baskı., Seçkin Yayıncılık, Ankara, 2012.
  • Engin, Y., Çimento ve Beton Tarihi. Beton Kalıp İskele Teknolojileri Dergisi, 2017.
  • Shang, H. S., & Yi, T. H. (2013). Freeze-thaw durability of air-entrained concrete. The Scientific World Journal, 2013.
  • Gupta, T., Sharma, R. K., & Chaudhary, S. (2015). Impact resistance of concrete containing waste rubber fiber and silica fume. International Journal of Impact Engineering, 83, 76-87.
  • Xie, J. H., Guo, Y. C., Liu, L. S., & Xie, Z. H. (2015). Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber. Construction and Building materials, 79, 263-272.
  • STEINHOFF, E. A. (1966). The Use of Mars and Phobos to Advance Interplanetary Flight. In Advances in Space Science and Technology (Vol. 8, pp. 347-383). Elsevier.
  • Kanamori, H., Matsumoto, S., & Ishikawad, N. (1991). Long-term properties of mortar exposed to a vacuum. Special Publication, 125, 57-70.
  • Horiguchi, T., Saeki, N., Yoneda, T., Hoshi, T., & Lin, T. D. (1998). Behavior of simulated lunar cement mortar in vacuum environment. In Space 98 (pp. 571-576).
  • Naser, M. Z. (2019). Extraterrestrial construction materials. Progress in Materials Science, 100577.
  • Lee, T. S., Lee, J., & Ann, K. Y. (2015). Manufacture of polymeric concrete on the Moon. Acta Astronautica, 114, 60-64.
  • Grugel, R. N., & Toutanji, H. (2008). Sulfur “concrete” for lunar applications–Sublimation concerns. Advances in Space Research, 41(1), 103-112.
  • Wan, L., Wendner, R., & Cusatis, G. (2016). A novel material for in situ construction on Mars: experiments and numerical simulations. Construction and Building Materials, 120, 222-231.
  • Alexiadis, A., Alberini, F., & Meyer, M. E. (2017). Geopolymers from lunar and Martian soil simulants. Advances in Space Research, 59(1), 490-495.
  • Chen, J., Ding, N., Li, Z., & Wang, W. (2016). Organic polymer materials in the space environment. Progress in Aerospace Sciences, 83, 37-56.
  • Mueller, R. P. (2017). Construction with Regolith.
  • Kuvvet, M., Regolitin kullanım alanları, Ay’da ve Mars’ta regolitin yapı malzemesi olarak kullanımı, regolitten başka elementlerin ve maddelerin çıkarımı. Hava Harp Okulu Havacılık Ve Uzay Teknolojileri Enstitüsü, İstanbul, 2010.
  • Erdoğan, T. Y., Beton, Beşinci Baskı, ODTÜ yayıncılık, Ankara, 2015.
  • Center of Lunar Astreoid Surface Science. Ay ve Mars simülasyonlarının içerikleri. 2014. [Online]. Available: https://sciences.ucf.edu/class/planetary-simulant-database/ .
  • Toklu, Y. C., Çerçevik, A. E., Kandemir, S. Y., & Yayli, M. O. (2017, June). Production of lunar soil simulant in Turkey. In 2017 8th International Conference on Recent Advances in Space Technologies (RAST) (pp. 1-5). IEEE.
  • Ishikawa, Y. (2009). Utilization of Regolith for Manufacturing Construction Material on Mars. In Mars (pp. 543-550). Springer, Berlin, Heidelberg.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Asena Karslıoğlu 0000-0001-5178-4069

Mehmet İnanç Onur 0000-0002-2421-4471

Publication Date April 1, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (ARACONF)

Cite

APA Karslıoğlu, A., & Onur, M. İ. (2020). Uzayda Yerli Kaynaklar ile Yapı Malzemesi Üretimi. Avrupa Bilim Ve Teknoloji Dergisi216-223. https://doi.org/10.31590/ejosat.araconf27