Year 2020, Volume , Issue 19, Pages 84 - 91 2020-08-31

Hücre Başına Çoklu Bit Media Geliştirmek İçin Nano Ölçekli Yarı İletken Bir Aygıtın Sonlu Eleman Modellemesi
Finite Element Modelling of a Nanoscale Semiconductor Device to Develop Multiple Bit per Cell Media

İbrahim ÇİNAR [1]


Genel olarak, temel bileşenler olarak kalkojen elementleri kullanan bir yarı iletken cihaz, gelecekteki ultra yüksek yoğunluklu veri depolama teknolojisi için potansiyel bir devrim teknolojisi olarak kabul edilmektedir. 0 ve 1 mantık durumları arasında yüksek kontrastlı bu tür cihazlar, veri depolama yoğunluğunu arttırmak için tek bir bitte birden çok mantık seviyesi fikrinin olası uygulaması olarak ortaya çıkmıştır. Mantık durumları arasındaki direnç seviyelerinin potansiyel stabilizasyonu, birkaç verinin tek bir hücrede (00, 01, 10, 11 seviyeleri gibi) depolanmasını sağlar. 3D sonlu eleman modelleme yoluyla hücre başına çoklu bit üretimi için nano ölçekli yarı iletken bir hücre içinde orta direnç durumlarının stabilize edilmesinde mevcut enjeksiyon ve malzeme seçiminin rolünün araştırıldığını rapor ediyorum. İlk olarak, anahtarlama dinamiklerinin karmaşık doğasını görselleştirmek için, faz değişimi kinetikleri, elektriksel, termal ve perkolasyon içeren iki aktif katman Ge2Sb2Te5 / Ge2Sb2Te5 (GST / GST) alaşımlı bir hücrede 3D sonlu eleman simülasyonları gerçekleştirildi. Simülasyon, sıcaklığın bir fonksiyonu olan birleştirilmiş diferansiyel denklemler ve termoelektrik etkiyi hesaba katmak için Seebeck katsayısı ile tekrarlamalı bir yaklaşım kullanılarak oluşturulmuştur. Anahtarlama dinamiklerinin karmaşık doğası, tam programlama voltajına ve malzeme özelliklerine karşı oldukça hassas görünmektedir. Model, dairesel üst temas cihazlarında beklenmedik bir şekilde kararlı orta durumların oluşumunun fiziksel kökeninin esas olarak bir programlama akımı darbesinin uygulanması sırasında anizotropik ısınmaya bağlı olduğunu göstermektedir. Model, gelecekteki ultra yüksek yoğunluklu veri depolama uygulamaları için bellek hücrelerini optimize etmek için kullanılabilecek bu tür karışık faz seviyeleri için gerekli programlama koşullarını ve malzeme seçimininin önemini başarıyla öngörmektedir.

Generally, a semiconductor device using chalcogenide elements as a fundamental components is considered as a potentially revelation technology for future ultra-high density data storage technology. These kind of device having high contrast between 0 and 1 logic states brought out the possible application of the idea of multiple logic levels in a single bit in an effort to boost data storage density. The potential stabilization of resistance levels in between the logic states enables storage of several data in a single cell (such as 00, 01, 10, 11 levels). I report on investigation of the role of the current injection and material selection in stabilizing middle resistance states within a nanoscale semiconductor cell for fabrication of a multiple-bit-per-cell through 3D finite element modeling. First, to visualize the complex nature of the switching dynamics, 3D finite element simulations were carried out in cell with two active layers Ge2Sb2Te5/Ge2Sb2Te5 (GST/GST) alloys incorporating phase change kinetics, electrical, thermal and percolation. Simulation was constructed by using an iterative approach with coupled differential equations, which are all as a function of temperature, as well as Seebeck coefficient to account for thermoelectric effect. The complex nature of switching dynamics appears highly sensitive to the exact programming voltage and material properties. The model suggests that the physical origin of the formation of stable middle states unexpectedly in circular top contact devices is mainly due to anisotropic heating during the application of a programming current pulse. The model successfully predicts the required programing conditions and the importantce of material selection for such mixed-phase levels, which can be used to optimize memory cells for future ultra-high-density data storage applications.  

  • A. Cywar, J. Li, C. Lam, and H. Silva, The impact of heater-recess and load matching in phase change memory mushroom cells, Nanotechnology 23, 225201 (2012).
  • A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, Electronic switching in phase-change memories, IEEE Trans. Electron Devices 51, 452 (2004).
  • B. Liu, T. Zhang, J. Xia, Z. Song, S. Feng, and B. Chen, Nitrogen-implanted Ge2Sb2Te5 film used as multilevel storage media for phase change random access memory, Semicond. Sci. Technol. 19, L61 (2004).
  • C. Ip, Selenium inhibition of chemical carcinogenesis, Fed. Proc. 44, 2573–2578 (1984)
  • C. Peng, L. Cheng, and M. Mansuripur, Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media, J. Appl. Phys. 82, 4183 (1997).
  • D. A. G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. Phys. 416, 636 (1935).
  • D. Psaltis, M. Levene, A. Pu, G. Barbastathis and Kevin Curtis, Holographic storage using shift multiplexing, Opt. Lett. 20, 782 (1995)
  • D.-H. Kim, F. Merget, M. Först, and H. Kurz, hree-dimensional simulation model of switching dynamics in phase change random access memory cells, J. Appl. Phys. 101, 064512 (2007).
  • F. Rao, Z. Song, L. Wu, B. Liu, S. Feng, and B. Chen, Investigation on the stabilization of the median resistance state for phase change memory cell with doublelayer chalcogenide films, Appl. Phys. Lett. 91, 123511 (2007).
  • F. Rao, Z. Song, M. Zhong, L. Wu, G. Feng, B. Liu, S. Feng, and B. Chen, Multilevel Data Storage Characteristics of Phase Change Memory Cell with Double layer Chalcogenide Films (Ge2Sb2Te5 and Sb2Te3), Jpn. J. Appl. Phys., Part 2 46, L25 (2007).
  • G. Bakan, A. Gokirmak, and H. Silva, Suppression of thermoelectric Thomson effect in silicon microwires under large electrical bias and implications for phase-change memory devices, J. Appl. Phys. 116, 234507 (2014)
  • G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, Phase change memory technology, J. Vac. Sci. Technol., B 28, 223 (2010).
  • H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, Phase Change Memory, Proc. IEEE 98, 2201 (2010).
  • I. Cinar, O. B. Aslan, A. Gokce, O. Dincer, V. Karakas, B. Stipe, J. A. Katine, G. Aktas, and O. Ozatay, Three dimensional finite element modeling and characterization of intermediate states in single active layer phase change memory devices, J. Appl. Phys. 117, 214302 (2015)
  • J. Lee, T. Kodama, Y. Won, M. Asheghi, and K. E. Goodson, Phase purity and the thermoelectric properties of Ge2Sb2Te5 films down to 25 nm thickness, J. Appl. Phys. 112, 014902 (2012).
  • J. Reifenberg, E. Pop, A. Gibby, S. Wong, and K. Goodson, Multiphysics modeling and impact of thermal boundary resistance in phase change memory devices, Proceedings of ITHERM (2006), pp. 106–113.
  • J. Tominaga et al., Ferroelectric catastrophe: beyond nanometer-scale optical resolution. Nanotechnology 15, 411–415 (2004)
  • K.-F. Kao, C.-M. Lee, M.-J. Chen, M.-J. Tsai, and T.-S. Chin, Ga2Te3Sb5—A Candidate for Fast and Ultralong Retention Phase‐Change Memory, Adv. Mater. 21, 1695 (2009).
  • L.C. Clark, G.F. Combs Jr., B.W. Turnbull et al., The nutritional prevention of cancer with selenium 1983–1993: a randomized clinical trial, J. Am. Med. Assoc. 276, 1957–1963 (1996)
  • M. Popescu, Non-crystalline solids, past, present, future. J. Non-Cryst. Solids 352(9–20), 887–891 (2006)
  • M. Wuttig and N. Yamada, Phase-change materials for rewriteable data storage, Nat. Mater. 6, 824 (2007).
  • M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, 4.7 GB phase-change optical disc with in-groove recording, Jpn. J. Appl. Phys. 1 38(3B), 1806–1810, (1999)
  • M.H. Brodsky, Amorphous Semiconductors (Springer Verlag, New York, 1985),
  • N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory, J. Appl. Phys. 69, 2849 (1991).
  • O. Ozatay, B. Stipe, J. A. Katine, and B. D. Terris, Electrical switching dynamics in circular and rectangular Ge2Sb2Te5 nanopillar phase change memory devices, J. Appl. Phys. 104, 084507 (2008).
  • P. Fiflis, L. Kirsch, D. Andruczyk, D. Curreli, and D. N. Ruzic, Seebeck coefficient measurements on Li, Sn, Ta, Mo, and W, J. Nucl. Mater. 438, 224 (2013).
  • S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, and H.-L. Lung, Phase-change random access memory: A scalable technology, IBM J. Res. Dev. 52, 465 (2008).
  • S. Raoux, W. Wełnic, and D. Ielmini, Phase change materials and their application to nonvolatile memories. Chem. Rev. 110, 240 (2010).
  • S.-H. Hong, H. Lee, K.-I. Kim, Y. Choi, and Y.-K. Lee, Fabrication of Multilevel Switching High Density Phase Change Data Recording Using Stacked GeTe/GeSbTe Structure, Jpn. J. Appl. Phys., Part 1 50, 081201 (2011).
  • S.-H. Hong, H. Lee, Y. Choi, and Y.-K. Lee, abrication of multi-level switching phase change nano-pillar device using InSe/GeSbTe stacked structure, Curr. Appl. Phys. 11, S16 (2011).
  • T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, R.B. James, Cadmium zinc telluride and its use as a nuclear radiation detector material, Mater. Sci. Eng. 32, 103 (2001)
  • W. Welnic and M. Wuttig, Reversible switching in phase-change materials, Mater. Today 11, 20 (2008).
  • XU Cheng, LIU Bo, CHEN Yi-Feng, LIANG Shuang, SONG Zhi-Tang, FENG Song-Lin, WAN Xu-Dong, YANG Zuo-Ya, XIE Joseph, CHEN Bomy, Switching Characteristics of Phase Change Memory Cell Integrated with Metal-Oxide Semiconductor Field Effect Transistor, Chin. Phys. Lett. 25, 1848 (2008).
  • Y. Gu, Z. Song, T. Zhang, B. Liu, and S. Feng, Novel phase-change material GeSbSe for application of three-level phase-change random access memory, Solid-State Electron. 54, 443 (2010).
  • Y. N. Hwang, J. S. Hong, and S. H. Lee, et al, Phase-change chalcogenide nonvolatile RAM completely based on CMOS technology, Symp. VLSI Technol., Dig. Tech. Pap. 29–31 (2003).
  • Y. Won, J. Lee, M. Asheghi, T. W. Kenny, et al, Phase and thickness dependent modulus of Ge2Sb2Te5 films down to 25 nm thickness, Appl. Phys. Lett. 100, 161905 (2012).
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-0509-913X
Author: İbrahim ÇİNAR (Primary Author)
Institution: KARAMANOGLU MEHMETBEY UNIVERSITY
Country: Turkey


Dates

Publication Date : August 31, 2020

APA Çi̇nar, İ . (2020). Finite Element Modelling of a Nanoscale Semiconductor Device to Develop Multiple Bit per Cell Media . Avrupa Bilim ve Teknoloji Dergisi , (19) , 84-91 . DOI: 10.31590/ejosat.680466