Research Article
BibTex RIS Cite

Putrescine in Herbicide Stress Protection: Modulate the Genomic Instability and DNA Methylation Changes in Wheat

Year 2020, Issue: 19, 442 - 448, 31.08.2020
https://doi.org/10.31590/ejosat.720065

Abstract

Wheat is one of the most consumed and important food in worldwide. During its growing season, weeds around the cultivated areas grow rapidly and inhibit the normal growth and development, stable yield and quality of wheat seriously. The prevention and removal of weeds are achieved by herbicide treatments. Dicamba is one of the herbicides that is used in agricultural areas which may represent a potential genotoxic risk to off-target crops. The present study was aimed to evaluate the effect of dicamba (0.2, 0.4 and 0.6 ppm) which caused to destabilize of genomic template stability (GTS) and DNA methylation changes in Triticum aestivum L. seedlings by RAPD (Randomly Amplified Polymorphic DNA) and CRED-RA (Coupled Restriction Enzyme Digestion-Random Amplification) techniques, respectively. Also, Full Methylation Ratio and Methylation Ratio were computed according to data of CRED-RA patterns. It was determined that the damage raised with an increasing dose of dicamba. To minimalize the genotoxic effects of dicamba, putrescine (0.01, 0.1 and 1 ppm), a kind of polyamine, were used. Especially, 1 ppm of putrescine was the best concentration to revert the stress-exposed wheat seedlings. Polyamines are positively charged organic cations and hence they interact with negatively charged macromolecules such as DNA and RNA and stabilize them. The results of this experiment have clearly shown that putrescine could be used effectively to protect wheat seedlings from the effects of dicamba on DNA damage and DNA methylation changes, also RAPD and CRED-RA could be used as ideal techniques to get reliable and accurate results.

References

  • Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1), 3.
  • Brzezinka, K., Altmann, S., Czesnick, H., Nicolas, P., Gorka, M., Benke, E., Kabelitz, T., Jähne, F., Graf, A., Kappel, C., & Bäurle, I. (2016). Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. Elife, 28, 5.
  • Carla, A., Eduarda, C., Jessica, R., Sofiatti Cesar, T., Forte, F., Winter Cinthia, M., Holz Rosilene, R., & Kaizer Leandro, G. (2018). Effect of herbicides in the oxidative stress in crop winter species. Anais da Academia Brasileira de Ciências, 90(2), 1533-1542.
  • Cenkci, S., Yildiz, M., Cigerci, I. H., Bozdag, A., Terzi, H., & Terzi, E. S. (2010). Evaluation of 2,4-D and dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicology and Environmental Safety, 73, 1558–1564.
  • Colicchio, J. M., Miura, F., Kelly, J. K., Ito, T., & Hileman, L. C. (2015) DNA methylation and gene expression in Mimulus guttatus. BMC Genomics, 16, 507.
  • Deng, J., Kou, S., Zou, Q., Li, P., Zhang, C., & Yuan, P. (2018). DNA methylation and plant stress responses. Journal of Plant Physiology and Pathology, 6(4).
  • Duchnowicz, P., & Koter, M. (2003). Damage to the erythrocyte membrane caused by chlorophenoxyacetic herbicides. Cellular Molecular Biology Letters, 8, 25-30.
  • Egan, J. F., & Mortensen, D. A. (2012). Quantifying vapor drift of dicamba herbicides applied to soybean. Environmental Toxicology and Chemistry, 31(5), 1023-1031.
  • González, N. V., Nikoloff, N., Soloneski, S., & Larramendy, M. L. (2011). A combination of the cytokinesis-block micronucleus cytome assay and centromeric identification for evaluation of the genotoxicity of dicamba. Toxicology Letters, 207, 204-212.
  • González, N. V., Soloneski, S. E., & Larramendy, M. L. (2006). Genotoxicity analysis of the phenoxy herbicide dicamba in mammalian cells in vitro. Toxicology in Vitro, 20, 1481–1487.
  • Heap, I. M. (2017). Global perspective of herbicide-resistant weeds. Pesticide and Management Science, 70, 1306-1315.
  • Iacomino, G., Picariello, G., & D'Agostino, L. (2012). DNA and nuclear aggregates of polyamines. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(10), 1745-1755.
  • Kurt, M., & Dizlek H., (2020). Ekmeklik buğdaylara (Triticum aestivum L.) iki aşamalı uygulanan tavlama işleminin unun ekmeklik özelliklerine etkisi. Avrupa Bilim ve Teknoloji Dergisi, 18, 445-453.
  • Kuznetsov, V. I. V., Radyukina, N. L., & Shevyakova, N. I. (2006). Polyamines and stres: biological role, metabolism and regulation. Russian Journal Plant Physiology, 53, 658-683.
  • Liu, W., Li, P., Qi, X., Zhou, Q., Sun, T., & Yang Y. (2005). DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere, 61, 158–167.
  • Lu, Y. C., Feng, S. J., Zhang, J. J., Luo, F., Zhang, S., & Yang, H. (2016). Genome-wide identification of DNA methylation provides insights into the association of gene expression in rice exposed to pesticide atrazine. Scientific Reports, 6(1), 1-15.
  • McCauley, L. A., Kent Anger, W., Keifer, M., Langley, R., Robson, M. G., & Rohlman, D. (2006). Studying health outcomes in farmworker populations exposed to pesticides. Environmental Health Perspectives, 114, 953-960.
  • Miller Fleming, L., Olin Sandoval, V., Campbell, K., & Ralser, M. (2015). Remaining mysteries of molecular biology: the role of polyamines in the cell. Journal of Molecular Biology, 427(21), 3389-3406.
  • Minocha, R., Minocha, S. C., & Long, S. (2004). Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In Vitro Cellular & Developmental Biology-Plant, 40, 572-580.
  • Park, K. Y., Seo, S. Y., & Kim, Y. J. (2019). Increasing polyamine contents enhances the stress tolerance via reinforcement of antioxidative properties. Frontiers in Plant Science, 10, 1331.
  • Robinson, M. A., Letarte, J., Cowbrough, M. J., Sikkema, P. H., & Tardif, F. J. (2015). Winter wheat (Triticum aestivum L.) response to herbicides as affected by application timing and temperature. Canadian Journal of Plant Science, 95(2), 325-333.
  • Rocco, L., Valentino, I. V., Scapigliati, G., & Stingo, V. (2014). RAPD-PCR analysis for molecular characterization and genotoxic studies of a new marine fish cell line derived from Dicentrarchus labrax. Cytotechnology, 66(3), 383-393.
  • Ruiz-Herrera, J., R. Ruiz-Medrano, R., & Dominguez, A. (1995). Selective inhibition of cytosine-DNA methylases by polyamines. FEBS Letters, 357, 192-196.
  • Shams, M., Yildirim E., Arslan E., & Agar G. (2020). Salinity induced alteration in DNA methylation pattern, enzyme activity, nutrient uptake and H2O2 content in pepper (Capsicum annuum L.) cultivars. Acta Physiologiae Plantarum, 42, 59.
  • Taie, H. A., El Yazal, M. A. S., Ahmed, S. M., & Rady, M. M. (2019). Polyamines modulate growth, antioxidant activity, and genomic DNA in heavy metal–stressed wheat plant. Environmental Science and Pollution Research, 26(22), 22338-22350.
  • Taspinar, M. S., Aydin, M., Arslan, E., Yaprak, M., & Agar, G. (2017). 5-Aminolevulinic acid improves DNA damage and DNA Methylation changes in deltamethrin-exposed Phaseolus vulgaris seedlings. Plant Physiology and Biochemistry, 118, 267-273.
  • Taspinar, M. S., Aydin, M., Sigmaz, B., Yildirim, N., & Agar, G. (2017). Protective role of humic acids against picloram-induced genomic instability and DNA methylation in Phaseolus vulgaris. Environmental Science and Pollution Research, 24(29), 22948-22953.
  • Valledor, L., Hasbu´n, R., Meijo´n, M., Rodri´guez, J. L., Santamari´a, E., Viejo, M., Berdasco, M., Feito, I., Fraga, M., Can´al, M. J., & Rodri´guez, R. (2007). Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tissue and Organ Culture, 91, 75-86.
  • Wada, Y., Miyamoto, K., Kusano, H., & Sano, H. (2004). Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in to tobacco plants. Molecular Genetics and Genomics, 271, 658-666.
  • Walters, D. (1997). The putrescine analogue (E)-1,4-diaminobut-2-ene reduces DNA methylation in the plant pathogenic fungus Pyrenophora avenae. FEMS Microbiology Letters, 154, 215-218.
  • Yildirim, N., Agar, G., Taspinar, M. S., Turan, M., Aydin, M., & Arslan, E. (2014). Protective role of humic acids against dicamba-induced genotoxicity and DNA methylation in Phaseolus vulgaris L. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 64(2), 141-148.

Herbisit Stres Korumasında Putresin: Buğdayda Genomik Kararsızlığı Azaltma ve DNA Metilasyon Değişiklikleri

Year 2020, Issue: 19, 442 - 448, 31.08.2020
https://doi.org/10.31590/ejosat.720065

Abstract

Buğday, dünyada en çok tüketilen önemli gıdalardan biridir. Büyüme mevsimi boyunca, ekili alanların etrafındaki yabani otlar hızla büyümekte ve buğdayın normal büyüme ve gelişmesini, verimini ve kalitesini ciddi şekilde engellemektedir. Yabancı otların önlenmesi ve giderilmesi, herbisit uygulamaları ile sağlanır. Dikamba, tarım alanlarında hedef olmayan ürünler için potansiyel genotoksik riskleri oluşturabilecek olan herbisitlerden biridir. Bu çalışmada Triticum aestivum L. fidelerinde genomik kalıp stabilitesinin (GTS) ve DNA metilasyonunun değişmesine neden olan dikambanın (0,2, 0,4 ve 0,6 ppm) etkisinin RAPD (Rastgele Çoğaltılmış Polimorfik DNA) ve CRED-RA (Çift Restriksiyon Enzimi Kesimi ve Rastgele Çoğaltım) teknikleri ile değerlendirilmesi amaçlanmıştır. Ayrıca Tam Metilasyon ve Metilasyon Oranları CRED-RA verilerine göre hesaplanmıştır. Dikamba dozu arttıkça oluşan hasarında arttığı belirlenmiştir. Dikambanın genotoksik etkilerini en aza indirmek için bir tür poliamin olan putresin (0.01, 0.1 ve 1 ppm) kullanılmıştır. Özellikle, 1 ppm putresin strese maruz kalan buğday fidelerini eski haline döndüren en iyi konsantrasyon olarak belirlenmiştir. Poliaminler pozitif yüklü organik katyonlardır ve bu nedenle DNA ve RNA gibi negatif yüklü makromoleküllerle etkileşir ve kararlılığını sağlarlar. Bu çalışmanın sonuçlarına göre buğday fidelerinde dikambanın sebep olduğu DNA hasarı ve DNA metilasyon değişikliklerinden korumak için putresin etkili bir şekilde kullanılabilirken, RAPD ve CRED-RA’nın güvenilir ve doğru sonuçlar elde etmek için ideal teknikler olarak kullanılabileceği önerilmektedir.

References

  • Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1), 3.
  • Brzezinka, K., Altmann, S., Czesnick, H., Nicolas, P., Gorka, M., Benke, E., Kabelitz, T., Jähne, F., Graf, A., Kappel, C., & Bäurle, I. (2016). Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. Elife, 28, 5.
  • Carla, A., Eduarda, C., Jessica, R., Sofiatti Cesar, T., Forte, F., Winter Cinthia, M., Holz Rosilene, R., & Kaizer Leandro, G. (2018). Effect of herbicides in the oxidative stress in crop winter species. Anais da Academia Brasileira de Ciências, 90(2), 1533-1542.
  • Cenkci, S., Yildiz, M., Cigerci, I. H., Bozdag, A., Terzi, H., & Terzi, E. S. (2010). Evaluation of 2,4-D and dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicology and Environmental Safety, 73, 1558–1564.
  • Colicchio, J. M., Miura, F., Kelly, J. K., Ito, T., & Hileman, L. C. (2015) DNA methylation and gene expression in Mimulus guttatus. BMC Genomics, 16, 507.
  • Deng, J., Kou, S., Zou, Q., Li, P., Zhang, C., & Yuan, P. (2018). DNA methylation and plant stress responses. Journal of Plant Physiology and Pathology, 6(4).
  • Duchnowicz, P., & Koter, M. (2003). Damage to the erythrocyte membrane caused by chlorophenoxyacetic herbicides. Cellular Molecular Biology Letters, 8, 25-30.
  • Egan, J. F., & Mortensen, D. A. (2012). Quantifying vapor drift of dicamba herbicides applied to soybean. Environmental Toxicology and Chemistry, 31(5), 1023-1031.
  • González, N. V., Nikoloff, N., Soloneski, S., & Larramendy, M. L. (2011). A combination of the cytokinesis-block micronucleus cytome assay and centromeric identification for evaluation of the genotoxicity of dicamba. Toxicology Letters, 207, 204-212.
  • González, N. V., Soloneski, S. E., & Larramendy, M. L. (2006). Genotoxicity analysis of the phenoxy herbicide dicamba in mammalian cells in vitro. Toxicology in Vitro, 20, 1481–1487.
  • Heap, I. M. (2017). Global perspective of herbicide-resistant weeds. Pesticide and Management Science, 70, 1306-1315.
  • Iacomino, G., Picariello, G., & D'Agostino, L. (2012). DNA and nuclear aggregates of polyamines. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(10), 1745-1755.
  • Kurt, M., & Dizlek H., (2020). Ekmeklik buğdaylara (Triticum aestivum L.) iki aşamalı uygulanan tavlama işleminin unun ekmeklik özelliklerine etkisi. Avrupa Bilim ve Teknoloji Dergisi, 18, 445-453.
  • Kuznetsov, V. I. V., Radyukina, N. L., & Shevyakova, N. I. (2006). Polyamines and stres: biological role, metabolism and regulation. Russian Journal Plant Physiology, 53, 658-683.
  • Liu, W., Li, P., Qi, X., Zhou, Q., Sun, T., & Yang Y. (2005). DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere, 61, 158–167.
  • Lu, Y. C., Feng, S. J., Zhang, J. J., Luo, F., Zhang, S., & Yang, H. (2016). Genome-wide identification of DNA methylation provides insights into the association of gene expression in rice exposed to pesticide atrazine. Scientific Reports, 6(1), 1-15.
  • McCauley, L. A., Kent Anger, W., Keifer, M., Langley, R., Robson, M. G., & Rohlman, D. (2006). Studying health outcomes in farmworker populations exposed to pesticides. Environmental Health Perspectives, 114, 953-960.
  • Miller Fleming, L., Olin Sandoval, V., Campbell, K., & Ralser, M. (2015). Remaining mysteries of molecular biology: the role of polyamines in the cell. Journal of Molecular Biology, 427(21), 3389-3406.
  • Minocha, R., Minocha, S. C., & Long, S. (2004). Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In Vitro Cellular & Developmental Biology-Plant, 40, 572-580.
  • Park, K. Y., Seo, S. Y., & Kim, Y. J. (2019). Increasing polyamine contents enhances the stress tolerance via reinforcement of antioxidative properties. Frontiers in Plant Science, 10, 1331.
  • Robinson, M. A., Letarte, J., Cowbrough, M. J., Sikkema, P. H., & Tardif, F. J. (2015). Winter wheat (Triticum aestivum L.) response to herbicides as affected by application timing and temperature. Canadian Journal of Plant Science, 95(2), 325-333.
  • Rocco, L., Valentino, I. V., Scapigliati, G., & Stingo, V. (2014). RAPD-PCR analysis for molecular characterization and genotoxic studies of a new marine fish cell line derived from Dicentrarchus labrax. Cytotechnology, 66(3), 383-393.
  • Ruiz-Herrera, J., R. Ruiz-Medrano, R., & Dominguez, A. (1995). Selective inhibition of cytosine-DNA methylases by polyamines. FEBS Letters, 357, 192-196.
  • Shams, M., Yildirim E., Arslan E., & Agar G. (2020). Salinity induced alteration in DNA methylation pattern, enzyme activity, nutrient uptake and H2O2 content in pepper (Capsicum annuum L.) cultivars. Acta Physiologiae Plantarum, 42, 59.
  • Taie, H. A., El Yazal, M. A. S., Ahmed, S. M., & Rady, M. M. (2019). Polyamines modulate growth, antioxidant activity, and genomic DNA in heavy metal–stressed wheat plant. Environmental Science and Pollution Research, 26(22), 22338-22350.
  • Taspinar, M. S., Aydin, M., Arslan, E., Yaprak, M., & Agar, G. (2017). 5-Aminolevulinic acid improves DNA damage and DNA Methylation changes in deltamethrin-exposed Phaseolus vulgaris seedlings. Plant Physiology and Biochemistry, 118, 267-273.
  • Taspinar, M. S., Aydin, M., Sigmaz, B., Yildirim, N., & Agar, G. (2017). Protective role of humic acids against picloram-induced genomic instability and DNA methylation in Phaseolus vulgaris. Environmental Science and Pollution Research, 24(29), 22948-22953.
  • Valledor, L., Hasbu´n, R., Meijo´n, M., Rodri´guez, J. L., Santamari´a, E., Viejo, M., Berdasco, M., Feito, I., Fraga, M., Can´al, M. J., & Rodri´guez, R. (2007). Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tissue and Organ Culture, 91, 75-86.
  • Wada, Y., Miyamoto, K., Kusano, H., & Sano, H. (2004). Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in to tobacco plants. Molecular Genetics and Genomics, 271, 658-666.
  • Walters, D. (1997). The putrescine analogue (E)-1,4-diaminobut-2-ene reduces DNA methylation in the plant pathogenic fungus Pyrenophora avenae. FEMS Microbiology Letters, 154, 215-218.
  • Yildirim, N., Agar, G., Taspinar, M. S., Turan, M., Aydin, M., & Arslan, E. (2014). Protective role of humic acids against dicamba-induced genotoxicity and DNA methylation in Phaseolus vulgaris L. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 64(2), 141-148.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Esra Arslan 0000-0002-9062-6896

Publication Date August 31, 2020
Published in Issue Year 2020 Issue: 19

Cite

APA Arslan, E. (2020). Putrescine in Herbicide Stress Protection: Modulate the Genomic Instability and DNA Methylation Changes in Wheat. Avrupa Bilim Ve Teknoloji Dergisi(19), 442-448. https://doi.org/10.31590/ejosat.720065