Research Article
BibTex RIS Cite

An Experimental Study on Investigation of Abrasive Properties of AlB2 Borid Reinforced Aluminium Matrix Composites

Year 2020, Issue: 19, 873 - 880, 31.08.2020

Abstract

In this study, it is aimed to investigate the abrasive wear behavior of AlB2 reinforced metal matrix composites under different test conditions. When applying abrasion tests to the composite materials produced, Taguchi experimental method was used. For wear tests, matrix type, reinforcement ratio, abrasive sandig type, load and shear rate factors are discussed and test recipes are prepared base on L8 (25) orthogonal series. The wear amounts of the produced composites, were analyzed taking into consideration the weight loses. As a result of the experiments, it was concluded that the abrasive sanding type is the most effective factor on wear. However, it was found that the amount of wear increased with increasing load and the amount of wear decreased with the increase of AlB2 particules added to matrix.

References

  • Carlson, B. O. N. (1990). The AI-B ( Aluminum-Boron ) System, 11(6), 2092.
  • Das, S., Das, S., & Das, K. (2007). SCIENCE AND Abrasive wear of zircon sand and alumina reinforced Al – 4 . 5 wt % Cu alloy matrix composites – A comparative study, 67, 746–751. https://doi.org/10.1016/j.compscitech.2006.05.001
  • Dinaharan, I., & Murugan, N. (2012). Effect of friction stir welding on microstructure , mechanical and wear properties of AA6061 / ZrB 2 in situ cast composites. Materials Science & Engineering A, 543, 257–266. https://doi.org/10.1016/j.msea.2012.02.085
  • Emamy, M., Mahta, M., & Rasizadeh, J. (2006). SCIENCE AND Formation of TiB 2 particles during dissolution of TiAl 3 in Al – TiB 2 metal matrix composite using an in situ technique, 66, 1063–1066. https://doi.org/10.1016/j.compscitech.2005.04.016
  • Ficici, F. (2016). The experimental optimization of abrasive wear resistance model for an in-situ AlB2/Al-4Cu metal matrix composite. Industrial Lubrication and Tribology, 68(6), 632–639. https://doi.org/10.1108/ILT-12-2015-0198
  • Ficici, F., & Koksal, S. (2016). Microstructural characterization and wear properties of in situ AlB2-reinforced Al-4Cu metal matrix composite. Journal of Composite Materials, 50(12), 1685–1696. https://doi.org/10.1177/0021998315595709
  • Ficici, F., Koksal, S., Kayikci, R., & Savas, O. (2011). Investigation of unlubricated sliding wear behaviours of in-situ AlB 2/Al metal matrix composite. Advanced Composites Letters, 20(4), 109–116.
  • Gupta, K. (2012). Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials. Materials and Design, 35, 467–479. https://doi.org/10.1016/j.matdes.2011.09.010
  • Kayikci, R., & Savaş, Ö. (2015). Fabrication and properties of in-situ Al/AlB2 composite reinforced with high aspect ratio borides. Steel and Composite Structures, 19(3), 777–787. https://doi.org/10.12989/scs.2015.19.3.777
  • Ko, M. (2006). Abrasive wear of Al 2 O 3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method, 37, 457–464. https://doi.org/10.1016/j.compositesa.2005.05.038
  • Koksal, S., Ficici, F., Kayikci, R., & Savas, O. (2012). Experimental optimization of dry sliding wear behavior of in situ AlB2/Al composite based on Taguchi’s method. Materials and Design, 42, 124–130. https://doi.org/10.1016/j.matdes.2012.05.048
  • Kumar, S., Chakraborty, M., Subramanya Sarma, V., & Murty, B. S. (2008). Tensile and wear behaviour of in situ Al-7Si/TiB2 particulate composites. Wear, 265(1–2), 134–142. https://doi.org/10.1016/j.wear.2007.09.007
  • Kumar, S., Sarma, V. S., & Murty, B. S. (2007). Influence of in situ formed TiB2 particles on the abrasive wear behaviour of Al-4Cu alloy. Materials Science and Engineering A, 465(1–2), 160–164. https://doi.org/10.1016/j.msea.2007.02.117
  • Liu, Z. Y., Wang, Q. Z., Xiao, B. L., Ma, Z. Y., & Liu, Y. (2010). Experimental and modeling investigation on SiC p distribution in powder metallurgy processed SiC p / 2024 Al composites, 527, 5582–5591. https://doi.org/10.1016/j.msea.2010.05.006
  • Mahapatra, S. S., & Patnaik, A. (2009). Study on mechanical and erosion wear behavior of hybrid composites using Taguchi experimental design. Materials and Design, 30(8), 2791–2801. https://doi.org/10.1016/j.matdes.2009.01.037
  • Miracle, D. B. (2005). SCIENCE AND Metal matrix composites – From science to technological significance, 65, 2526–2540. https://doi.org/10.1016/j.compscitech.2005.05.027
  • Mohan, S., Prakash, V., & Pathak, J. P. (2002). Wear characteristics of HSLA steel, 252(June 2001), 16–25.
  • Ozdin, K. (2007). Wear resistance of aluminium alloy and its composites reinforced by Al 2 O 3 particles, 183, 301–309. https://doi.org/10.1016/j.jmatprotec.2006.10.021
  • Radhika, N., & Raghu, R. (2018). Effect of Centrifugal Speed in Abrasive Wear Behavior of Al-Si5Cu3/SiC Functionally Graded Composite Fabricated by Centrifugal Casting. Transactions of the Indian Institute of Metals, 71(3), 715–726. https://doi.org/10.1007/s12666-017-1204-9
  • Radhika, N, Subramanian, R., & Prasat, S. V. (2011). Tribological Behaviour of Aluminium / Alumina / Graphite Hybrid Metal Matrix Composite Using Taguchi ’ s Techniques, 10(5), 427–443.
  • Radhika, Nachimuthu, & Raghu, R. (2016). Effect of Abrasive Medium on Wear Behavior of Al/AlB2 Functionally Graded Metal Matrix Composite. Tribology Online, 11(3), 487–493. https://doi.org/10.2474/trol.11.487
  • Ross, P. J., & Ross, P. J. (n.d.). Taguchi Techniques for Quality Engineering : Loss Function , Orthogonal Expiriments , Parameter and Tolerance Design Orthogonal Expiriments , Parameter and Tolerance Design.
  • Rosso, M. (2006). Ceramic and metal matrix composites : Routes and properties, 175, 364–375. https://doi.org/10.1016/j.jmatprotec.2005.04.038
  • Savaş, Ö. (2019). The production and properties of Al3Ti reinforced functionally graded aluminum matrix composites produced by the centrifugal casting method. Materials Research Express, 6(12), 10–12. https://doi.org/10.1088/2053-1591/ab562c
  • Savaş, Ö., & Başer, M. S. (2019). Bayburt Üniversitesi Fen Bilimleri Dergisi Investigation of Abrasive Wear Behaviour of Functional Grade Al 3 Ti Reinforced Aluminium Matrix Composites by Taguchi Approach Alüm nyum Ana Yapıl Fonks yonel Derecelend r lm ş Al 3 T Takv yel Kompoz tler n Abra.
  • SAVAŞ, Ö., & Demirok, Ö. (2019). Fonksiyonel Derecelendirilmiş TiB2/Al Kompozitlerin Abrasif Aşınma Davranışları Üzerine Deneysel Bir Çalışma. European Journal of Science and Technology, (17), 972–981. https://doi.org/10.31590/ejosat.648682
  • Savaş, Ö., & Kayikci, R. (2013). Production and wear properties of metal matrix composites reinforced with boride particles. Materials and Design, 51, 641–647. https://doi.org/10.1016/j.matdes.2013.04.049
  • Sharma, P., Khanduja, D., & Sharma, S. (2014). Tribological and mechanical behavior of particulate aluminum matrix composites. https://doi.org/10.1177/0731684414556012
  • Sharma, S. C. (2001). The sliding wear behavior of Al6061 – garnet particulate composites, 249(June), 1036–1045.
  • Singh, M., Mondal, D. P., & Das, S. (2006). Abrasive wear response of aluminium alloy – sillimanite particle reinforced composite under low stress condition, 419, 59–68. https://doi.org/10.1016/j.msea.2005.11.056
  • Tjong, S. C., & Lau, K. C. (2014). Properties and abrasive wear of TiB 2 / Al-4 % Cu composites produced by hot isostatic pressing, 59(1999), 2005–2013.
  • Tjong, S. C., & Ma, Z. Y. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites, 29(July), 49–113.
  • U, M. A. T. (2001). Practicalization of cast metal matrix composites ž MMCCs /, 0–10.
  • Zhu, H. G., Ai, Y. L., Min, J., Wu, Q., & Wang, H. Z. (2010). Dry sliding wear behavior of Al-based composites fabricated by exothermic dispersion reaction in an Al – ZrO 2 – C system. Wear, 268(11–12), 1465–1471. https://doi.org/10.1016/j.wear.2010.02.023
  • Zhu, H., Wang, H., Ge, L., Xu, W., & Yuan, Y. (2008). Study of the microstructure and mechanical properties of composites fabricated by the reaction method in an Al – TiO 2 – B 2 O 3 system, 478, 87–92. https://doi.org/10.1016/j.msea.2007.05.076

AlB2 Borür Takviyeli Alüminyum Matrisli Kompozitlerin Abrasif Aşınma Özelliklerinin İncelenmesi Üzerine Deneysel Bir Çalışma

Year 2020, Issue: 19, 873 - 880, 31.08.2020

Abstract

Bu çalışmada AlB2 takviyeli metal matrisli kompozitlerin farklı test koşulları altında abrasif aşınma davranışlarının incelenmesi amaçlanmıştır. Üretilen kompozit malzemelere aşınma testleri uygulanırken Taguchi deneysel yönteminden faydalanılmıştır. Aşınma testleri için matris tipi, takviye oranı, aşındırıcı zımpara tipi, yük ve kayma hızı faktörleri ele alınmış ve deney reçeteleri L8 (25) ortogonal serisi baz alınarak hazırlanmıştır. Üretilen kompozitlerin aşınma özellikleri ağırlık kayıpları dikkate alınarak analiz edilmiştir. Deneyler sonucunda aşındırıcı zımpara tipinin aşınma üzerine en etkili faktör olduğu sonucuna ulaşılmıştır. Bununla birlikte artan yükle birlikte aşınma miktarlarının arttığı ve matrise ilave edilen AlB2 parçacıklarının artışıyla birlikte aşınma miktarının azaldığı saptanmıştır.

References

  • Carlson, B. O. N. (1990). The AI-B ( Aluminum-Boron ) System, 11(6), 2092.
  • Das, S., Das, S., & Das, K. (2007). SCIENCE AND Abrasive wear of zircon sand and alumina reinforced Al – 4 . 5 wt % Cu alloy matrix composites – A comparative study, 67, 746–751. https://doi.org/10.1016/j.compscitech.2006.05.001
  • Dinaharan, I., & Murugan, N. (2012). Effect of friction stir welding on microstructure , mechanical and wear properties of AA6061 / ZrB 2 in situ cast composites. Materials Science & Engineering A, 543, 257–266. https://doi.org/10.1016/j.msea.2012.02.085
  • Emamy, M., Mahta, M., & Rasizadeh, J. (2006). SCIENCE AND Formation of TiB 2 particles during dissolution of TiAl 3 in Al – TiB 2 metal matrix composite using an in situ technique, 66, 1063–1066. https://doi.org/10.1016/j.compscitech.2005.04.016
  • Ficici, F. (2016). The experimental optimization of abrasive wear resistance model for an in-situ AlB2/Al-4Cu metal matrix composite. Industrial Lubrication and Tribology, 68(6), 632–639. https://doi.org/10.1108/ILT-12-2015-0198
  • Ficici, F., & Koksal, S. (2016). Microstructural characterization and wear properties of in situ AlB2-reinforced Al-4Cu metal matrix composite. Journal of Composite Materials, 50(12), 1685–1696. https://doi.org/10.1177/0021998315595709
  • Ficici, F., Koksal, S., Kayikci, R., & Savas, O. (2011). Investigation of unlubricated sliding wear behaviours of in-situ AlB 2/Al metal matrix composite. Advanced Composites Letters, 20(4), 109–116.
  • Gupta, K. (2012). Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials. Materials and Design, 35, 467–479. https://doi.org/10.1016/j.matdes.2011.09.010
  • Kayikci, R., & Savaş, Ö. (2015). Fabrication and properties of in-situ Al/AlB2 composite reinforced with high aspect ratio borides. Steel and Composite Structures, 19(3), 777–787. https://doi.org/10.12989/scs.2015.19.3.777
  • Ko, M. (2006). Abrasive wear of Al 2 O 3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method, 37, 457–464. https://doi.org/10.1016/j.compositesa.2005.05.038
  • Koksal, S., Ficici, F., Kayikci, R., & Savas, O. (2012). Experimental optimization of dry sliding wear behavior of in situ AlB2/Al composite based on Taguchi’s method. Materials and Design, 42, 124–130. https://doi.org/10.1016/j.matdes.2012.05.048
  • Kumar, S., Chakraborty, M., Subramanya Sarma, V., & Murty, B. S. (2008). Tensile and wear behaviour of in situ Al-7Si/TiB2 particulate composites. Wear, 265(1–2), 134–142. https://doi.org/10.1016/j.wear.2007.09.007
  • Kumar, S., Sarma, V. S., & Murty, B. S. (2007). Influence of in situ formed TiB2 particles on the abrasive wear behaviour of Al-4Cu alloy. Materials Science and Engineering A, 465(1–2), 160–164. https://doi.org/10.1016/j.msea.2007.02.117
  • Liu, Z. Y., Wang, Q. Z., Xiao, B. L., Ma, Z. Y., & Liu, Y. (2010). Experimental and modeling investigation on SiC p distribution in powder metallurgy processed SiC p / 2024 Al composites, 527, 5582–5591. https://doi.org/10.1016/j.msea.2010.05.006
  • Mahapatra, S. S., & Patnaik, A. (2009). Study on mechanical and erosion wear behavior of hybrid composites using Taguchi experimental design. Materials and Design, 30(8), 2791–2801. https://doi.org/10.1016/j.matdes.2009.01.037
  • Miracle, D. B. (2005). SCIENCE AND Metal matrix composites – From science to technological significance, 65, 2526–2540. https://doi.org/10.1016/j.compscitech.2005.05.027
  • Mohan, S., Prakash, V., & Pathak, J. P. (2002). Wear characteristics of HSLA steel, 252(June 2001), 16–25.
  • Ozdin, K. (2007). Wear resistance of aluminium alloy and its composites reinforced by Al 2 O 3 particles, 183, 301–309. https://doi.org/10.1016/j.jmatprotec.2006.10.021
  • Radhika, N., & Raghu, R. (2018). Effect of Centrifugal Speed in Abrasive Wear Behavior of Al-Si5Cu3/SiC Functionally Graded Composite Fabricated by Centrifugal Casting. Transactions of the Indian Institute of Metals, 71(3), 715–726. https://doi.org/10.1007/s12666-017-1204-9
  • Radhika, N, Subramanian, R., & Prasat, S. V. (2011). Tribological Behaviour of Aluminium / Alumina / Graphite Hybrid Metal Matrix Composite Using Taguchi ’ s Techniques, 10(5), 427–443.
  • Radhika, Nachimuthu, & Raghu, R. (2016). Effect of Abrasive Medium on Wear Behavior of Al/AlB2 Functionally Graded Metal Matrix Composite. Tribology Online, 11(3), 487–493. https://doi.org/10.2474/trol.11.487
  • Ross, P. J., & Ross, P. J. (n.d.). Taguchi Techniques for Quality Engineering : Loss Function , Orthogonal Expiriments , Parameter and Tolerance Design Orthogonal Expiriments , Parameter and Tolerance Design.
  • Rosso, M. (2006). Ceramic and metal matrix composites : Routes and properties, 175, 364–375. https://doi.org/10.1016/j.jmatprotec.2005.04.038
  • Savaş, Ö. (2019). The production and properties of Al3Ti reinforced functionally graded aluminum matrix composites produced by the centrifugal casting method. Materials Research Express, 6(12), 10–12. https://doi.org/10.1088/2053-1591/ab562c
  • Savaş, Ö., & Başer, M. S. (2019). Bayburt Üniversitesi Fen Bilimleri Dergisi Investigation of Abrasive Wear Behaviour of Functional Grade Al 3 Ti Reinforced Aluminium Matrix Composites by Taguchi Approach Alüm nyum Ana Yapıl Fonks yonel Derecelend r lm ş Al 3 T Takv yel Kompoz tler n Abra.
  • SAVAŞ, Ö., & Demirok, Ö. (2019). Fonksiyonel Derecelendirilmiş TiB2/Al Kompozitlerin Abrasif Aşınma Davranışları Üzerine Deneysel Bir Çalışma. European Journal of Science and Technology, (17), 972–981. https://doi.org/10.31590/ejosat.648682
  • Savaş, Ö., & Kayikci, R. (2013). Production and wear properties of metal matrix composites reinforced with boride particles. Materials and Design, 51, 641–647. https://doi.org/10.1016/j.matdes.2013.04.049
  • Sharma, P., Khanduja, D., & Sharma, S. (2014). Tribological and mechanical behavior of particulate aluminum matrix composites. https://doi.org/10.1177/0731684414556012
  • Sharma, S. C. (2001). The sliding wear behavior of Al6061 – garnet particulate composites, 249(June), 1036–1045.
  • Singh, M., Mondal, D. P., & Das, S. (2006). Abrasive wear response of aluminium alloy – sillimanite particle reinforced composite under low stress condition, 419, 59–68. https://doi.org/10.1016/j.msea.2005.11.056
  • Tjong, S. C., & Lau, K. C. (2014). Properties and abrasive wear of TiB 2 / Al-4 % Cu composites produced by hot isostatic pressing, 59(1999), 2005–2013.
  • Tjong, S. C., & Ma, Z. Y. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites, 29(July), 49–113.
  • U, M. A. T. (2001). Practicalization of cast metal matrix composites ž MMCCs /, 0–10.
  • Zhu, H. G., Ai, Y. L., Min, J., Wu, Q., & Wang, H. Z. (2010). Dry sliding wear behavior of Al-based composites fabricated by exothermic dispersion reaction in an Al – ZrO 2 – C system. Wear, 268(11–12), 1465–1471. https://doi.org/10.1016/j.wear.2010.02.023
  • Zhu, H., Wang, H., Ge, L., Xu, W., & Yuan, Y. (2008). Study of the microstructure and mechanical properties of composites fabricated by the reaction method in an Al – TiO 2 – B 2 O 3 system, 478, 87–92. https://doi.org/10.1016/j.msea.2007.05.076
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Erman İnci

Ömer Savaş 0000-0001-7454-1457

Publication Date August 31, 2020
Published in Issue Year 2020 Issue: 19

Cite

APA İnci, E., & Savaş, Ö. (2020). AlB2 Borür Takviyeli Alüminyum Matrisli Kompozitlerin Abrasif Aşınma Özelliklerinin İncelenmesi Üzerine Deneysel Bir Çalışma. Avrupa Bilim Ve Teknoloji Dergisi(19), 873-880. https://doi.org/10.31590/ejosat.724381