An Educational Kit to Promote Teaching of Photovoltaic Systems
Year 2020,
Issue: 19, 916 - 922, 31.08.2020
Ali Erduman
,
Erşan Ömer Yüzer
,
Ali Durusu
,
Fikret Yıldız
Abstract
In this study, an educational kit was presented for photovoltaic panel education and this simple and fast training set enables to show relation between soiling, tilt angle and the power output of photovoltaic panels. The designed training set is low cost and suitable for the use of high school and undergraduate students. The developed training set was used for educational purposes on the students of Hakkari University Colemerik Vocational School, Electrical Program. A questionnaire was conducted to determine the effect of photovoltaic system education on the learning status of students using the designed education set. The results obtained from the survey showed that the designed experiment set was suitable for photovoltaic system education and students because positive feedback was received from the majority of students.
References
- G. P. Peters, R. M. Andrew, S. Solomon, and P. Friedlingstein, “Measuring a fair and ambitious climate agreement using cumulative emissions,” Environ. Res. Lett., vol. 10, no. 10, 2015.
- IEA, “Total primary energy supply (TPES) by source; World 1990-2017,” 2019.
- C. Şahin, M. Karaçor, and H. Özbay, “Yenilenebilir Enerji Kaynağı Kurulum Gücü Minimize Katsayısının Belirlenmesi,” Avrupa Bilim ve Teknol. Derg., no. 15, pp. 404–411, 2019.
- H. Akdemir, A. Durusu, A. Erduman, and I. Nakir, “Effect of energy management of a grid connected photovoltaic/ battery/load system on the optimal photovoltaic placement on a national scale: The case of Turkey,” J. Sol. Energy Eng. Trans. ASME, vol. 140, no. 2, 2018.
- A. Durusu and A. Erduman, “An Improved Methodology to Design Large-Scale Photovoltaic Power Plant,” J. Sol. Energy Eng., vol. 140, no. 1, Dec. 2017.
- A. Ajder, A. Durusu, and İ. Nakir, “Impact of climatic conditions on PV array’s optimum tilt angle,” Eur. J. Sci. Technol., vol. 13, pp. 84–90, 2018.
- S. C. S. Costa, A. S. A. C. Diniz, and L. L. Kazmerski, “Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012-2015,” Renew. Sustain. Energy Rev., vol. 63, pp. 33–61, 2016.
- J. K. Kaldellis and M. Kapsali, “Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements,” Energy, vol. 36, no. 8, pp. 5154–5161, 2011.
- M. R. Maghami, H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, and S. Hajighorbani, “Power loss due to soiling on solar panel: A review,” Renew. Sustain. Energy Rev., vol. 59, pp. 1307–1316, 2016.
- I. Romero-Fiances, E. Muñoz-Cerón, R. Espinoza-Paredes, G. Nofuentes, and J. De La Casa, “Analysis of the performance of various pv module technologies in Peru,” Energies, vol. 12, no. 1, 2019.
- T. Sarver, A. Al-Qaraghuli, and L. L. Kazmerski, “A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches,” Renew. Sustain. Energy Rev., vol. 22, pp. 698–733, 2013.
- M. Mani and R. Pillai, “Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations,” Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 3124–3131, 2010.
- Moe Moe Thu | Reenu | Su Wityi Aung, “Teaching Design Strategies in Higher Education,” Int. J. Trend Sci. Res. Dev. Int. J. Trend Sci. Res. Dev., vol. 3, no. 5, pp. 1227–1232, 2019.
- S. Coşkun, Y. Kayıkcı, and E. Gençay, “Adapting Engineering Education to Industry 4.0 Vision,” Technologies, vol. 7, no. 1, p. 10, 2019.
- P. F. Torres et al., “A mobile educational tool designed for teaching and dissemination of grid connected photovoltaic systems,” Comput. Electr. Eng., vol. 76, pp. 168–182, 2019.
- A. Alqahtani, M. Alsaffar, M. El-Sayed, and H. Behbehani, “A photovoltaic system experiment in a laboratory environment,” Int. J. Electr. Eng. Educ., vol. 55, no. 1, pp. 31–43, 2018.
- A. C. Bilu, A. Durusu, K. Dogansahin, and B. Kekezoglu, “A new educational software package for photovoltaic system feasibility: PVGUI,” Int. J. Electr. Eng. Educ., p. 0020720919894204, Dec. 2019.
- P. C. Wankat, “Analysis of the first ten years of the journal of engineering education,” J. Eng. Educ., vol. 93, no. 1, pp. 13–21, 2004.
- G. Akkaş and F. Gürbüz, “Teknik Eleman Yetiştirmede Eğitim Şartlarının Öğrenciler Üzerindeki Etkilerinin İncelenmesi,” Avrupa Bilim ve Teknol. Derg., pp. 197–203, 2020.
- I. Nakir, A. Durusu, E. Ugur, and M. Tanrioven, “Performance assessment of MPPT algorithms for vehicle integrated solar systems,” 2012 IEEE Int. Energy Conf. Exhib. ENERGYCON 2012, pp. 1034–1038, 2012.
Fotovoltaik Sistemlerin Öğretimini Destekleyen Bir Eğitim Kiti
Year 2020,
Issue: 19, 916 - 922, 31.08.2020
Ali Erduman
,
Erşan Ömer Yüzer
,
Ali Durusu
,
Fikret Yıldız
Abstract
Bu çalışmada, fotovoltaik (PV) sistem eğitim seti sunulmuştur. Bu basit ve hızlı eğitim seti, fotovoltaik panellerin kirlenme, eğim açısı ve güç çıkışı arasındaki ilişkiyi göstermeyi sağlamaktadır. Tasarlanan eğitim seti düşük maliyetli olup lise ve lisans öğrencilerinin kullanımına uygundur. Geliştirilen eğitim seti Hakkari Üniversitesi Çölemerik Meslek Yüksekokulu Elektrik Programı öğrencilerine eğitim amaçlı kullandırılmıştır. Tasarlanan eğitim setini kullanan öğrencilerin fotovoltaik sistemleri öğrenmedeki etkisini belirlemek için anket yapılmıştır. Anketten elde edilen sonuçlar, tasarlanan deney setinin fotovoltaik sistem eğitimine uygun olduğunu öğrencilerin çoğunluğundan alınan olumla geri dönüş ile göstermiştir.
References
- G. P. Peters, R. M. Andrew, S. Solomon, and P. Friedlingstein, “Measuring a fair and ambitious climate agreement using cumulative emissions,” Environ. Res. Lett., vol. 10, no. 10, 2015.
- IEA, “Total primary energy supply (TPES) by source; World 1990-2017,” 2019.
- C. Şahin, M. Karaçor, and H. Özbay, “Yenilenebilir Enerji Kaynağı Kurulum Gücü Minimize Katsayısının Belirlenmesi,” Avrupa Bilim ve Teknol. Derg., no. 15, pp. 404–411, 2019.
- H. Akdemir, A. Durusu, A. Erduman, and I. Nakir, “Effect of energy management of a grid connected photovoltaic/ battery/load system on the optimal photovoltaic placement on a national scale: The case of Turkey,” J. Sol. Energy Eng. Trans. ASME, vol. 140, no. 2, 2018.
- A. Durusu and A. Erduman, “An Improved Methodology to Design Large-Scale Photovoltaic Power Plant,” J. Sol. Energy Eng., vol. 140, no. 1, Dec. 2017.
- A. Ajder, A. Durusu, and İ. Nakir, “Impact of climatic conditions on PV array’s optimum tilt angle,” Eur. J. Sci. Technol., vol. 13, pp. 84–90, 2018.
- S. C. S. Costa, A. S. A. C. Diniz, and L. L. Kazmerski, “Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012-2015,” Renew. Sustain. Energy Rev., vol. 63, pp. 33–61, 2016.
- J. K. Kaldellis and M. Kapsali, “Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements,” Energy, vol. 36, no. 8, pp. 5154–5161, 2011.
- M. R. Maghami, H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, and S. Hajighorbani, “Power loss due to soiling on solar panel: A review,” Renew. Sustain. Energy Rev., vol. 59, pp. 1307–1316, 2016.
- I. Romero-Fiances, E. Muñoz-Cerón, R. Espinoza-Paredes, G. Nofuentes, and J. De La Casa, “Analysis of the performance of various pv module technologies in Peru,” Energies, vol. 12, no. 1, 2019.
- T. Sarver, A. Al-Qaraghuli, and L. L. Kazmerski, “A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches,” Renew. Sustain. Energy Rev., vol. 22, pp. 698–733, 2013.
- M. Mani and R. Pillai, “Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations,” Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 3124–3131, 2010.
- Moe Moe Thu | Reenu | Su Wityi Aung, “Teaching Design Strategies in Higher Education,” Int. J. Trend Sci. Res. Dev. Int. J. Trend Sci. Res. Dev., vol. 3, no. 5, pp. 1227–1232, 2019.
- S. Coşkun, Y. Kayıkcı, and E. Gençay, “Adapting Engineering Education to Industry 4.0 Vision,” Technologies, vol. 7, no. 1, p. 10, 2019.
- P. F. Torres et al., “A mobile educational tool designed for teaching and dissemination of grid connected photovoltaic systems,” Comput. Electr. Eng., vol. 76, pp. 168–182, 2019.
- A. Alqahtani, M. Alsaffar, M. El-Sayed, and H. Behbehani, “A photovoltaic system experiment in a laboratory environment,” Int. J. Electr. Eng. Educ., vol. 55, no. 1, pp. 31–43, 2018.
- A. C. Bilu, A. Durusu, K. Dogansahin, and B. Kekezoglu, “A new educational software package for photovoltaic system feasibility: PVGUI,” Int. J. Electr. Eng. Educ., p. 0020720919894204, Dec. 2019.
- P. C. Wankat, “Analysis of the first ten years of the journal of engineering education,” J. Eng. Educ., vol. 93, no. 1, pp. 13–21, 2004.
- G. Akkaş and F. Gürbüz, “Teknik Eleman Yetiştirmede Eğitim Şartlarının Öğrenciler Üzerindeki Etkilerinin İncelenmesi,” Avrupa Bilim ve Teknol. Derg., pp. 197–203, 2020.
- I. Nakir, A. Durusu, E. Ugur, and M. Tanrioven, “Performance assessment of MPPT algorithms for vehicle integrated solar systems,” 2012 IEEE Int. Energy Conf. Exhib. ENERGYCON 2012, pp. 1034–1038, 2012.