Research Article
BibTex RIS Cite

Yüksek Hızlı Trenler için 5G Milimetre Dalga Haberleşmesi

Year 2020, Ejosat Special Issue 2020 (HORA), 172 - 177, 15.08.2020
https://doi.org/10.31590/ejosat.779652

Abstract

Araçlara kesintisiz yüksek veri hızı bağlantısı sağlamak, 5G ağları için bir ön koşuldur. 6 GHz altı bantlar kalabalıklaştığı ve yüksek veri hızı iletişimini desteklemekte zorlandığı için milimetre dalga (mmWave) bantları araştırmacıları cezbetmiştir. Bu nedenle, bu makalede, 5G'nin dikey uygulamalarından biri olarak kabul edilen yüksek hızlı trenler (HST) için mmWave teknolojisi araştırılmıştır. Özellikle, iki aday frekans bandı, yani 28 GHz ve 60 GHz, dikkate alınmıştır. Gelişmiş sistem seviyeli simulator kullanılarak, sistem performansı ulaşılabilir veri hacmi (veri hızı) ve kapsama alanı (baz istasyonları arası mesafe) açısından 2 km'lik bir ray hattı boyunca her iki aday 5G frekans bandı için değerlendirilir. Buna ilave olarak sistem performansı farklı hüzme genişliği ve tren hızları için de değerlendirilir. Sonuçlar, açık görüş hattı (LoS) senaryoları için, dar bir hüzme (12⁰ gibi) kullanılsa bile her iki frekans bandında da HST'lere yüksek veri hızları ve kesintisiz bağlantı sağlanabileceğini gösterir. Yani 28 GHz frekans bandı kullanıldığında ortalama 4.5 Gbps veri hızı ve 1700 m kapsama alanı, 60 GHz frekans bandı kullanıldığında ortalama 2 Gbps veri hızı ve 1400 m kapsama alanı elde edilmiştir. Farklı tren hızları incelendiğinde, dikkate alınan senaryo LoS olduğu için tren hızı arttığında, veri hızı sonuçlarında hafif bir azalma olduğu gözlenmektedir. Kapsamlı simülasyon sonuçları ve analizlerine dayanarak, 5G mmWave haberleşmesinin HST uygulamalarına güvenilir gigabit bağlantısı sağlamak için uygun bir çözüm olduğu sonucuna varılmıştır.

References

  • Cisco. (2017). CISCO Visual Networking Index: Forecast and Methodology: 2016–2021. White Paper.
  • 3GPP TR 38.913 (2017). Study on Scenarios and Requirements for Next Generation Access Technologies. TR 38.913 (V14.2.0).
  • Rappaport, T.S. et al. (2013). Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!. IEEE Access. 1, 335-349.
  • Va, V., Zhang, X., and Heath, R. W. (2015). Beam Switching for Millimeter Wave Communication to Support High Speed Trains. IEEE 82nd Vehicular Technology Conference, Boston. 1-5.
  • Kim, J., and Molisch, A. F. (2013). Enabling Gigabit services for IEEE802.11ad-capable high-speed train networks. IEEE Radio and Wireless Symposium. 145–147.
  • Va, V., Shimizu, T., Bansal G., and Heath, R. W. (2016). Beam design for beam switching based millimeter wave vehicle-to-infrastructure communications. IEEE International Conference on Communications. 1-6.
  • Va, V. (2018). Beam alignment for millimeter wave vehicular communications. PhD thesis. The University of Texas at Austin, Electrical and Computer Engineering.
  • Muns, G. R., Mishra, K. V., Guerra, C. B., Eldar, Y. C., and Chowdhury, K. R. (2019). Beam Alignment and Tracking for Autonomous Vehicular Communication using IEEE 802.11ad-based Radar. IEEE Conference on Computer Communications Workshops. 535-540.
  • Sun, S., MacCartney Jr, G. R., and Rappaport, T. S. (2017). A Novel Millimeter-Wave Channel Simulator and Applications for 5G Wireless Communications. IEEE International Conference on Communications. 1-7.
  • Ju, S., Kanhere, O., Xing, Y., and Rappaport, T. S. (2019). A Millimeter-Wave Channel Simulator NYUSIM with Spatial Consistency and Human Blockage. IEEE Global Communications Conference. Hawaii. 1-6.
  • Adhikary, A., Safadi, E. A., Samimi, M. K., Wang, R., Caire, G., Rappaport, T. S., and Molisch, A. F. (2014). Joint spatial division and multiplexing for mm-wave channels. IEEE Journal on Selected Areas in Communications. 32 (6), 1239–1255.
  • IEEE 802.11ad Std. (2012). Part 11 WLAN MAC and PHY specification, Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

5G Millimeter Wave Communications for High Speed Trains

Year 2020, Ejosat Special Issue 2020 (HORA), 172 - 177, 15.08.2020
https://doi.org/10.31590/ejosat.779652

Abstract

Providing a seamless high data rate connectivity to vehicles is a prerequisite for 5G networks. Since the sub-6 GHz bands have become crowded and struggled to support high data rate communications, millimeter wave (mmWave) bands have attracted the researchers. Thus, in this paper, mmWave technology is investigated for high speed trains (HST) which is considered as one of the vertical applications of the 5G. Specifically, two candidate frequency bands, namely 28 GHz and 60 GHz, are considered. An advanced system level simulator is used to evaluate the system performance over a 2 km rail track in terms of achievable throughput (data rate) and coverage range (inter side distance) at both candidate 5G frequency bands. Moreover, the system performance is evaluated for different beamwidths and trains speeds. The results show that for Line-of-Sight (LoS) scenarios, high data rates and the seamless connectivity to HSTs can be provided even using a narrow beam (such as 12⁰) at both frequency bands, i.e., 1700 m and 1400 m coverage ranges with average data rates of 4.5 Gbps and 2 Gbps are achieved at the 28 GHz and the 60 GHz bands respectively. When different trains speeds are investigated, it is observed that there are slight reductions in the throughput results, which is negligible, when the train speed increases since the considered scenario is the LoS. Based on the extensive simulation results and the analysis, it is concluded that 5G mmWave communication is a viable solution to provide the reliable gigabit connectivity to the HST applications.

References

  • Cisco. (2017). CISCO Visual Networking Index: Forecast and Methodology: 2016–2021. White Paper.
  • 3GPP TR 38.913 (2017). Study on Scenarios and Requirements for Next Generation Access Technologies. TR 38.913 (V14.2.0).
  • Rappaport, T.S. et al. (2013). Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!. IEEE Access. 1, 335-349.
  • Va, V., Zhang, X., and Heath, R. W. (2015). Beam Switching for Millimeter Wave Communication to Support High Speed Trains. IEEE 82nd Vehicular Technology Conference, Boston. 1-5.
  • Kim, J., and Molisch, A. F. (2013). Enabling Gigabit services for IEEE802.11ad-capable high-speed train networks. IEEE Radio and Wireless Symposium. 145–147.
  • Va, V., Shimizu, T., Bansal G., and Heath, R. W. (2016). Beam design for beam switching based millimeter wave vehicle-to-infrastructure communications. IEEE International Conference on Communications. 1-6.
  • Va, V. (2018). Beam alignment for millimeter wave vehicular communications. PhD thesis. The University of Texas at Austin, Electrical and Computer Engineering.
  • Muns, G. R., Mishra, K. V., Guerra, C. B., Eldar, Y. C., and Chowdhury, K. R. (2019). Beam Alignment and Tracking for Autonomous Vehicular Communication using IEEE 802.11ad-based Radar. IEEE Conference on Computer Communications Workshops. 535-540.
  • Sun, S., MacCartney Jr, G. R., and Rappaport, T. S. (2017). A Novel Millimeter-Wave Channel Simulator and Applications for 5G Wireless Communications. IEEE International Conference on Communications. 1-7.
  • Ju, S., Kanhere, O., Xing, Y., and Rappaport, T. S. (2019). A Millimeter-Wave Channel Simulator NYUSIM with Spatial Consistency and Human Blockage. IEEE Global Communications Conference. Hawaii. 1-6.
  • Adhikary, A., Safadi, E. A., Samimi, M. K., Wang, R., Caire, G., Rappaport, T. S., and Molisch, A. F. (2014). Joint spatial division and multiplexing for mm-wave channels. IEEE Journal on Selected Areas in Communications. 32 (6), 1239–1255.
  • IEEE 802.11ad Std. (2012). Part 11 WLAN MAC and PHY specification, Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Berna Bulut 0000-0001-5988-4718

Publication Date August 15, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (HORA)

Cite

APA Bulut, B. (2020). 5G Millimeter Wave Communications for High Speed Trains. Avrupa Bilim Ve Teknoloji Dergisi172-177. https://doi.org/10.31590/ejosat.779652