Research Article
BibTex RIS Cite

Parallel Implenetation of the GPR Techniques for Detecting and Mapping Ancient Buildings by Using CUDA

Year 2020, Ejosat Special Issue 2020 (HORA), 352 - 359, 15.08.2020
https://doi.org/10.31590/ejosat.780115

Abstract

Yere nüfuz eden radar (GPR), bir duvarın arkasına gizlenebilen veya duvarın içine yerleştirilebilen nesnelerin algılanması için kullanılan ultra geniş bantlı bir elektromanyetik sensördür. GPR yöntemi, arayüzde yer alan yüksek hızda bir anten tarafından yatay yönde yeraltına gönderilen elektromanyetik dalgaların, yine alıcı tarafından yatay yönde yansıtılmasının kaydedilmesi prensibi üzerine çalışır. Gömülü yapılar; toplanan veriler, bilgisayar programları ve çeşitli filtreler kullanılarak algılanır. Hava cepleri gibi duvarlar arasında gizlenmiş hedeflerin bulunması arkeologlara yardımcı olur. Bu çalışmada, toprağın dağılımı için Lorentz modeli kullanılmıltır. Sınır koşullarını sönümleyip açık bir alanı simüle etmek için mükemmel uyumlu katman (PML) kullanılmış ve dağıtıcı medyaya uyacak şekilde genişletilmiştir. Sonlu farklı zaman alanı (FDTD) yöntemi, elektromanyetik alanların zaman basamaklamasındaki kısmi diferansiyel denklemleri ayrıştırmak için kullanılır. FDTD hesaplaması çok yavaş çalışmaktadır. Bu sorunu çözmek için grafik işlem biriminde (GPGPU) genel amaçlı programlama yapılabilmektedir. Bu çalışmada GPU'ya CUDA kullanılarak 3-B FDTD yöntemi uygulanmış ve 10 kat hızlanmıştır.

References

  • Klein, K.A., Santamarina, J.C.. "Electrical conductivity of soils: Underlying phenomena". Journal of Environmental and Engineering Geophysics, Vol. 8, No. 4, pp. 263–273, 2003.
  • G. Alsharahi, A. Faize, A. Drioucach, A.M. Mostapha., "Determination of the Physical Properties and Geometric Shape of Objects Buried by Simulation Signals Radar GPR".8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019.
  • B. Burns., "Comparison of Measured Ground Penetrating Radar Response of Soil Surface to FDTD Model", IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018.
  • Liu Y., Guo L. X., Li Y. J., "FDTD Investigation on the Detection of Ground Rough Surface in GPR Modelling", International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2018.
  • S. Sesnic, A. Bradic, N. Bralic, F. Milicevic, M. Pastuovic, S. Vranjkovic., "FDTD Modeling of the Landmine Detection via Ground Penetrating Radar Response". 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2018.
  • Wei X.K., Wei S., Wang X.H., "Hybrid Sub-Gridded Time-Domain Method for Ground Penetrating Radar Simulations Including Dispersive Materials", IEEE Access, vol. 6, pp. 15777-15786, 2018.
  • M. A. Alsunaidi, A. A. Al-Jabr, “An Efficient Time-Domain Algorithm for the Simulation of Heterogenous Dispersive Structures” Journal of Infrared, milimeter and Terahertz Waves, November 2009.
  • Liu Y., Guo L. X., “FDTD Investigation on GPR Detecting of Underground Subsurface Layers and Buried Objects”, IEEE MTT-S International Conference on NEMO.,2016.
  • V. Myroshnychenko and C. Brosseau, " Finite-element modelling method for the prediction of the complex effective permitivity of two-phase random statistically isotropic heterostructures." Journal of Applied Physics, vol. 97, no. 4, 044101, Februrary 2005.
  • M. Livesey, J.F. Stack, F. Costen, T. Nanri, N. Nakashima, and S. Fujino, " Development of a CUDA Implementation of the 3D FDTD Method", IEEE Antennas and Propagation Magazine, Vol. 54, No. 5, October 2012.
  • J. Chi, F. Liu, E. Weber, Y. Li, and S. Crozier, “GPUAccelerated FDTD Modeling of Radio-Frequency Field- Tissue Interactions in High-Field MRI,” IEEE Transactions on Biomedical Engineering, 58, 6, pp. 1789-1796, June 2011.
  • Z. Bo, X. Zheng-hui, R. Wu, L. Wei-ming, and S. Xin-qing, “Accelerating FDTD Algorithm Using GPU Computing,” IEEE International Conference on Microwave Technology and Computational Electromagnetics, pp. 410-413, May 2011.
  • D. A. Karavaev, V. V. Kovalevsky, "A Technique for Large-Scale 2D Seismic Field Simulations on Supercomputers", XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), 2018.
  • T. Nagaoka, and S. Watanabe, "A GPU-Based Calculation Using the Three-Dimensional FDTD Method for Electromagnetic Field Analysis", 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, August 31 - September 4, 2010.
  • J.P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, pp. 185-200, 1994.
  • Y. Zhou, X. Duan, L. Zhou, Z. Luo, “Research on the Influence of CPU Power Management on the Performance of Parallel FDTD”, International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 2019.
  • D.A. Karavaev, V. V. Kovalevsky, “A Technique for Large-Scale 2D Seismic Field Simulations on Supercomputers” XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), 2-6 Oct,2018.
  • A. Weiss, A. Elserbeni, V. Demir, M. Hadi, “Accelerating the FDTD Algorithm on CPUs with MATLAB's Parallel Computing Toolbox” International Applied Computational Electromagnetics Society Symposium (ACES), 2019.
  • S. Ohnuki, R. Ohnishi, D. Wu, T. Yamaguchi, “Time-Division Parallel FDTD Algorithm", IEEE Photonics Technology Letters, Vol.30, Iss. 24, pp. 2143-2146, 2018.
  • M. A. Alsunaidi, A. A. Al-Jabr, “A General ADE-FDTD Algorithm for the Simulation of Dispersive Structures.” IEEE Photonics Technology Lett., vol. 21, no. 21, pp. 817- 819, 2009

Parallel Implenetation of the GPR Techniques for Detecting and Mapping Ancient Buildings by Using CUDA

Year 2020, Ejosat Special Issue 2020 (HORA), 352 - 359, 15.08.2020
https://doi.org/10.31590/ejosat.780115

Abstract

Ground-penetrating radar (GPR) is an ultra-wideband electromagnetic sensor used for the detection of objects which may be hidden behind a wall or inserted within the wall. The GPR method works on the principle of recording the reflection of electromagnetic waves sent to the underground at high speed from the interfaces by an antenna located in the horizontal direction, again by the receiver in the horizontal direction. Embedded structures are detected using collected data, computer programs, and various filters. Search for the presence of designated targets hidden between the walls, such as air pockets is help to archaeologists. In this work the Lorentz model was used for the distribution of the soil. The perfectly matched layer (PML) used for absorbing boundary conditions to simulate an open space and its expanded to match dispersive media. The finite-difference time-domain (FDTD) method is used to decompose partial differential equations for time cascading of the electromagnetic fields. FDTD calculation works very slowly. General-purpose programming can be done on the graphics processing unit (GPGPU) to solve this problem. In this work, the 3-D FDTD method was applied to the GPU by using CUDA and it was 10 times faster.

References

  • Klein, K.A., Santamarina, J.C.. "Electrical conductivity of soils: Underlying phenomena". Journal of Environmental and Engineering Geophysics, Vol. 8, No. 4, pp. 263–273, 2003.
  • G. Alsharahi, A. Faize, A. Drioucach, A.M. Mostapha., "Determination of the Physical Properties and Geometric Shape of Objects Buried by Simulation Signals Radar GPR".8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019.
  • B. Burns., "Comparison of Measured Ground Penetrating Radar Response of Soil Surface to FDTD Model", IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018.
  • Liu Y., Guo L. X., Li Y. J., "FDTD Investigation on the Detection of Ground Rough Surface in GPR Modelling", International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2018.
  • S. Sesnic, A. Bradic, N. Bralic, F. Milicevic, M. Pastuovic, S. Vranjkovic., "FDTD Modeling of the Landmine Detection via Ground Penetrating Radar Response". 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2018.
  • Wei X.K., Wei S., Wang X.H., "Hybrid Sub-Gridded Time-Domain Method for Ground Penetrating Radar Simulations Including Dispersive Materials", IEEE Access, vol. 6, pp. 15777-15786, 2018.
  • M. A. Alsunaidi, A. A. Al-Jabr, “An Efficient Time-Domain Algorithm for the Simulation of Heterogenous Dispersive Structures” Journal of Infrared, milimeter and Terahertz Waves, November 2009.
  • Liu Y., Guo L. X., “FDTD Investigation on GPR Detecting of Underground Subsurface Layers and Buried Objects”, IEEE MTT-S International Conference on NEMO.,2016.
  • V. Myroshnychenko and C. Brosseau, " Finite-element modelling method for the prediction of the complex effective permitivity of two-phase random statistically isotropic heterostructures." Journal of Applied Physics, vol. 97, no. 4, 044101, Februrary 2005.
  • M. Livesey, J.F. Stack, F. Costen, T. Nanri, N. Nakashima, and S. Fujino, " Development of a CUDA Implementation of the 3D FDTD Method", IEEE Antennas and Propagation Magazine, Vol. 54, No. 5, October 2012.
  • J. Chi, F. Liu, E. Weber, Y. Li, and S. Crozier, “GPUAccelerated FDTD Modeling of Radio-Frequency Field- Tissue Interactions in High-Field MRI,” IEEE Transactions on Biomedical Engineering, 58, 6, pp. 1789-1796, June 2011.
  • Z. Bo, X. Zheng-hui, R. Wu, L. Wei-ming, and S. Xin-qing, “Accelerating FDTD Algorithm Using GPU Computing,” IEEE International Conference on Microwave Technology and Computational Electromagnetics, pp. 410-413, May 2011.
  • D. A. Karavaev, V. V. Kovalevsky, "A Technique for Large-Scale 2D Seismic Field Simulations on Supercomputers", XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), 2018.
  • T. Nagaoka, and S. Watanabe, "A GPU-Based Calculation Using the Three-Dimensional FDTD Method for Electromagnetic Field Analysis", 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, August 31 - September 4, 2010.
  • J.P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, pp. 185-200, 1994.
  • Y. Zhou, X. Duan, L. Zhou, Z. Luo, “Research on the Influence of CPU Power Management on the Performance of Parallel FDTD”, International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 2019.
  • D.A. Karavaev, V. V. Kovalevsky, “A Technique for Large-Scale 2D Seismic Field Simulations on Supercomputers” XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), 2-6 Oct,2018.
  • A. Weiss, A. Elserbeni, V. Demir, M. Hadi, “Accelerating the FDTD Algorithm on CPUs with MATLAB's Parallel Computing Toolbox” International Applied Computational Electromagnetics Society Symposium (ACES), 2019.
  • S. Ohnuki, R. Ohnishi, D. Wu, T. Yamaguchi, “Time-Division Parallel FDTD Algorithm", IEEE Photonics Technology Letters, Vol.30, Iss. 24, pp. 2143-2146, 2018.
  • M. A. Alsunaidi, A. A. Al-Jabr, “A General ADE-FDTD Algorithm for the Simulation of Dispersive Structures.” IEEE Photonics Technology Lett., vol. 21, no. 21, pp. 817- 819, 2009
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

M. Cihat Mumcu This is me 0000-0001-8097-7214

Salih Bayar This is me 0000-0002-4600-1880

Publication Date August 15, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (HORA)

Cite

APA Mumcu, M. C., & Bayar, S. (2020). Parallel Implenetation of the GPR Techniques for Detecting and Mapping Ancient Buildings by Using CUDA. Avrupa Bilim Ve Teknoloji Dergisi352-359. https://doi.org/10.31590/ejosat.780115