Year 2020, Volume , Issue 20, Pages 548 - 565 2020-12-31

Dünyada enerjiye olan ihtiyaç günden güne artmaktadır. Verimlilik ve güvenilirliklerindeki artış ve fiyatlarındaki düşüş sayesinde güneş panellerinin (fotovoltaiklerin) kullanımı da dünya genelinde yaygınlaşmaktadır. Modern mimaride güneş paneli estetik özellikleri ve elektrik üretimi açısından tercih edilmektedir. Geleneksel güneş paneli sistemleri ağırlıklı olarak kristalin silisyum güneş hücrelerinden (c–SiPVs) üretilmektedir. Düşük fiyatlı güneş paneli hücreleri fiyat etkin ve enerji tasarruflu cam sistemlerinin üretimi bağlamında büyük ilgi çekmektedir. Güneş panellerinin önemli bileşenlerinden birisi olan güneş control camı iç mekana giren gün ışığını ve ısısını azaltması böylece yaşam konforu sağlaması ile mimaride ve otomotiv pencerelerinde yaygın olarak kullanımaktadır. Bu makalede cam güneş panelleri hakkında genel bir derleme çalışması sunulmaktadır.
The need for energy sources in the world is gradually increasing day by day. Photovoltaics (PVs) usage has worldwidely spread thanks to the efficiency and reliability increase and price dcrease of solar panels. The photovoltaic (PV) glazing technique is a preferred method in modern architecture because of its aesthetic properties besides generating electricity. Traditional PV glazing systems are mostly produced from crystalline silicon solar cells (c–SiPVs). The development of low–cost PV cells for the production of cost–effective and energy–saving glass systems has been of great interest. Solar control glass which is one of the crucial components of PV panels is largely employed for architectural and automotive windows to lower the sunlight and heat inlet for the comfort. Hereby a general overview of solar glass panels is presented.
  • Handbook of glass, https://doi.org/10.1007.978-3-319-93728-1, Retrieved January 15, 2020.
  • Ghosh, A., Sundaram, S., Mallick, T. K., 2018 Appl. Energy, 128, 1591–1600.
  • Gürtürk, M., Benli, H., Koçdemir Ertürk N., 2020 Renew. Energy, 145, 711–724.
  • (Website 1): https://www.spiritenergy.co.uk/kb-solar-glass-photovoltaic-windows, Retrieved April 23, 2020.
  • (Website 2): https://www.onyxsolar.com/product-services/photovoltaic-glass-solutions/pv-curtain-wall, Retrieved April 23, 2020.
  • Salem, B., 2019 Solar panel design, Bill, Salem Press Encyclopedia of Science.
  • (Website 3): https://www.flickr.com/photos/usnationalarchives/7066049117, Retrieved May 02, 2020.
  • (Website 4): https://eospso.nasa.gov/missions/nimbus-1, Retrieved January 15, 2020.
  • (Website 5): https://news.energysage.com/the-history-and-invention-of-solar-panel-technology/, Retrieved January 15, 2020.
  • (Website 6): https://www.theguardian.com/environment/2010/oct/05/white-house-green-solar-panels, Retrieved January 15, 2020.
  • (Website 7) https://www.greenrhinoenergy.com/solar/technologies/solar_glass.php, Retrieved April 23, 2020.
  • (Website 8): https://www.chinasolar-panel.com/classification-and-application-of-solar-photovoltaic-glass.html, Retrieved April 23, 2020.
  • (Website 9): https://www.glassonweb.com/articles, Retrieved April 23, 2020.
  • (Website 10): https://www.powerfromsunlight.com/why-solar-panel-glass-is-very-important-when-choosing-solar-panel-type/, Retrieved April 20, 2020.
  • (Website 11): http://www.fsolar.de/en, Retrieved April 20, 2020.
  • (Website 12): https://yandex.com.tr/gorsel/search?from=tabbar&text=crack%20behavior%20of%20plain%20and%20tempered%20glasses, Retrieved April 20, 2020.
  • Ebisawa, J. and Ando, E., 1998 Curr. Opin. Solid Mater. Sci., 3(4), 386–390.
  • (Website 13): https://www.electrical4u.com/working-principle-of-photovoltaic-cell-or-solar-cell/, Retrieved April 20, 2020.
  • (Website 14): https://www.electricaltechnology.org/2015/06/how-to-make-a-solar-cell-photovoltaic-cell.html/amp, Retrieved April 26, 2020.
  • (Website 15): https://www.bing.com/images/search?q=Construction+Of+A+Solar+Cell+Using+Silicon+Semiconductor&FORM=HDRSC2, Retrieved April 20, 2020.
  • (Website 16): https://www.reportlinker.com/p05799686/?utm_source=PRN, Retrieved April 23, 2020.
  • Cüce, E., Riffat, S. B., 2015 Arab J. Sci. Eng., 40(8), 2233–38.
  • Cüce, E., Riffat, S. B., 2015 Renew. Sustain. Energy Rev., 41, 695–714.
  • Cüce, E., Cüce P. M., 2016 Renew. and Sustain. Energy Rev., 54, 1345–1357.
  • He, Y. L., Xie, T., 2015 Appl. Therm. Eng., 81, 28–50.
  • Long, L. et al., 2014 Appl. Energy, 136, 89–97.
  • Qu, J. et al., 2014 Energy Build., 77, 1–10.
  • Favoino, F. et al., 2015 Appl. Energy, 156, 1–15.
  • Peng, L. L. et al., 2015 Appl. Energy, 138, 572–583.
  • Skandalos, N., Karamanis, D., 2015 Renew. Sustain. Energy Rev., 49, 306–22.
  • (Website 17): https://yandex.com.tr/gorsel/search?text=Crystalline%20silicon%20solar%20cell&from=tabbar, Retrieved April 20, 2020.
  • (Website 18): https://yandex.com.tr/gorsel/search?text=organic%20solar%20cell&from=tabbar, Retrieved April 20, 2020.
  • (Website 19): https://yandex.com.tr/gorsel/search?text=build%2Cng%20%2Cintegrated%20solar%20cell&stype=image&lr=103835&source=wiz, Retrieved April 20, 2020.
  • Miyazaki, T. et al., 2005 Renew. Energy, 30(3), 281–304.
  • Park, K. E. et al., 2010 Energy, 35(6), 2681–2687.
  • Kroon, J. M. et al., 2007 Prog. Photovoltaics: Res. Appl., 15, 1–18.
  • Nazeeruddin, M. K. et al., 2005 J. Am. Chem. Soc., 127(48), 16835–47.
  • Dennler, G., Sariciftci, N. S., 2005 Proc. of IEEE, 93(8), 1429–39.
  • Jorgensen, M. et al., 2008 Sol. Energy Mater. & Sol. Cells, 92, 686–714.
  • Hau, S. K. et al., 2010 Polym. Rev., 50(4), 474–510.
  • Choi, H. et al., 2013 Organic Electronics, 14(11), 3138–45.
  • Yang, X. et al., 2013 Adv. Energy Mater., 3, 666–73.
  • Brabec, C. J. et al., 2010 Adv. Mater., 22(34), 3839–56.
  • Kim H. et al., 2004 Appl. Phys. Lett., 85, 464–6.
  • Schmidt–Mende, L et al., 2005 Appl. Phys. Lett., 86, 013504.
  • Kang, M. G. et al., 2003 Sol. Energy Mater. & Sol. Cells, 75(3–4), 475–79.
  • Hinsch, A. et al., 2009 Sol. Energy Mater. & Sol. Cells, 93(6–7), 820–24.
  • Sastrawan, R. et al., 2006 Sol. Energy Mater. & Sol. Cells, 90(11), 1680–91.
  • Yamaguchi, T. et al., 2010 Sol. Energy Mater. & Sol. Cells, 94(5), 812–16.
  • Lee, W. J. et al., 2008 J. Photochem. Photobiol. A: Chem., 194(1), 27–30.
  • Kang, M. G. et al., 2006 Sol. Energy Mater. & Sol. Cells, 90(5), 574–81.
  • Young, C.–H. et al., 2014 Energy and Build., 78, 66–78.
  • Ohsaki, H. et al., 1997 J. of Non–Cryst. Solids, 218, 223–229.
  • Hong, M. et al., 2019 Energy Conv. and Manag., 201, 112167.
  • Ballif, C. et al., 2004 Sol. Energy Mater. & Sol. Cells, 82(3), 331–344.
  • Zhu, H. et al., 2004 Mechatronics, 14, 805–819.
  • Hongsheng, Z. et al., 2006 Rare Metals, 25(6), 351–354.
  • Weinhardt, L. et al., 2007 Thin Solid Films, 515(15), 6119–6122.
  • Gall, S. et al., 2009 Sol. Energy Mater. & Sol. Cells, 93(6–7), 1004–8.
  • Tachan, Z. et al., 2010 Sol. Energy Mater. & Sol. Cells, 94, 317–322.
  • Rosa–Clot, M. et al., 2010 Renew. Energy, 35(8), 1862–1865.
  • Nagamedianova, Z. et al., 2011 Opt. Mater., 33, 1999–2005.
  • Dominguez, A. et al., 2011 Solar Energy, 85, 2244–2255.
  • Sumitomo, T. et al., 2011 Int. J. of Machine Tools & Manufac., 51, 797–805.
  • Verma, L. K. et al., 2011 Renew. Energy, 36(9), 2489–2493.
  • Rosa–Clot, M. et al., 2011 Solar Energy, 85(10), 2433–2442.
  • Tina,, G. M. et al., 2012 Energy, 39(1), 17–26.
  • Lee, K. et al., 2012 Electrochem. Comm., 22, 157–161.
  • Hee, J. Y. et al., 2012 Energy Procedia, 15, 421–427.
  • Xin, C. et al., 2013 Solar Energy, 93, 121–126.
  • Lua, Y. et al., 2013 Optik, 124, 3392–3395.
  • Jelle, B. J., 2013 Energy and Build., 67, 334–351.
  • Naumenko, K., Eremeyev, V. A., 2014 Composite Structures, 112, 283–291.
  • Young, C.–H. et al., 2014 Energy and Build., 78, 66–78.
  • Cattaruzza, E. et al., 2014 Sol. Energy Mater. & Sol. Cells, 130, 272–280.
  • Yiannis, T., 2014 Energy Procedia, 57, 2186–2194.
  • Pop, S. C. et al., 2015 IEEE 42nd PVSC.
  • Womack, G. et al., 2015 PVSC.
  • Gerthoffer, A. et al., 2015 Thin Solid Films, 592, 99–104.
  • Spasiano, D. et al., 2015 Solar photocatalysis: Appl. Catalysis B: Environ., 170–171, 90–123.
  • Kawamoto, H., Shibata, T., 2015 J. of Electrostatics, 73, 65–70.
  • Mahadik, D. B. et al., 2015 Sol. Energy Mater. & Sol. Cells, 140, 61–68.
  • Wang, J. et al., 2015 Energy Procedia, 70, 126–129.
  • Humood, M. et al., 2016 Tribology Int., 102, 237–248.
  • Garcia, J. A. M. et al., 2016 31st Symposium on Microelectronics Technology and Devices (SBMicro).
  • Vossen, F. M. et al., 2016 Energy and Build., 113, 123–132.
  • Gupta, A., Chauhan, Y. K., 2016 Energy, 116, 716–734.
  • Plentz, J. et al., 2016 Mater. Sci. and Eng. B, 204, 34–37.
  • Barroso, J. C. S. et al., 2016 Sol. Energy Mater. & Sol. Cells, 148, 73–86.
  • Kumar, A. et al., 2016 Sol. Energy Mater. & Sol. Cells, 145, 432–439.
  • Zarcone, R. et al., 2016 Energy Procedia, 91, 887–896.
  • Mainini, A. G. et al., 2016 Procedia Eng., 155, 352–360.
  • Nayshevsky, I. et al., 2017 IEEE 44th.
  • Isbilir, K. et al., 2017 IEEE 44th PVSC.
  • Jiang, J. et al., 2017 18th ICEPT.
  • Humood, M. et al., 2017 Solar Energy, 142, 13–25.
  • Maurer, C. et al., 2017 Solar Energy, 154, 158–186.
  • Gholami, A. et al., 2017 Solar Energy, 157, 559–565.
  • Brew, K. W. et al., 2017 Thin Solid Films, 642, 110–116.
  • Lee, T. D., Ebong, A. U., 2017 Renew. and Sustain. Energy Rev., 70, 1286–1297.
  • Baumgärtner, L. et al., 2017 Energy Procedia, 122, 211–216.
  • Praveen, J., VijayaRamaraju, V., 2017 Materials Today: Proc., 4, 5233–5238.
  • Sutha, S. et al., 2017 Sol. Energy Mater. & Sol. Cells, 165, 128–137.
  • Moutinho, H. R. et al., 2017 Sol. Energy Mater. & Sol. Cells, 172, 145–153.
  • Omara, Z. M. et al., 2017 Renew. and Sustain. Energy Rev., 78, 176–193.
  • Moutinho, H. R. et al., 2018 IEEE 7th WCPEC.
  • Andenæs, E. et al., 2018 Solar Energy, 159, 318–328.
  • Chen, E. Y.–T. et al., 2018 Sol. Energy Mater. & Sol. Cells, 179, 247–253.
  • Grosjean, A. et al., 2018 Sol. Energy Mater. & Sol. Cells, 182, 166–177.
  • Ge, T. S. et al., 2018 Renew. Energy, 126, 1126–1140.
  • Settino, J. et al., 2018 Renew. and Sustain. Energy Rev., 90, 892–909.
  • Taniguchi, M. M. et al., 2019 J. of Non–Cryst. Solids, 526, 119717.
  • Nur, I. M. et al., 2019 Solar Energy, 187, 379–392.
  • Li, Y. et al., 2019 Solar Energy, 188, 1248–1255.
  • Penga, J. et al., 2019 Appl. Energy, 242, 854–872.
  • Neugebohrn, N. et al., 2019 Thin Solid Films, 685, 131–135.
  • Womack, G. et al., 2019 Surface & Coatings Techno., 358, 76–83.
  • Pagnanelli, F. et al., 2019 J. of Environ. Manag., 248, 109313.
  • Liu, H. et al., 2019 Sol. Energy Mater. & Sol. Cells, 193, 184–197.
  • Dhavalkumar, N. J. et al., 2019 Sol. Energy Mater. & Sol. Cells, 200, 110023.
  • Song, B.–P. et al., 2020 Waste Manag., 101, 180–187.
  • Parthiban, A. et al., 2020 Energy Conv. and Manag., 205, 112428.
  • Chi, F. et al., 2020 Appl. Energy, 260, 114304.
  • Anctila, A. et al., 2020 Appl. Energy, 261, 114429.
  • Gürtürk, M. et al., 2020 Energy, 145, 711–724.
  • Özden, T. et al., 2020, Euro. J. of Sci. and Techn., (18), 54–60.
  • Karasu, B. et al., 2020 El–Cezeri J. of Sci. and Eng. (ECJSE), 7(2) (in press).
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-7769-9863
Author: Bekir KARASU (Primary Author)
Institution: Eskişehir TeknikÜniversitesi
Country: Turkey


Orcid: 0000-0002-6486-2094
Author: Zehra OYTAÇ
Institution: Eskişehir Teknik Üniversitesi
Country: Turkey


Orcid: 0000-0001-8503-9622
Author: Elif ERGANİ
Institution: Eskişehir Teknik Üniversitesi
Country: Turkey


Orcid: 0000-0003-2015-2186
Author: Ahmet BULUÇ
Institution: Eskişehir Teknik Üniversitesi
Country: Turkey


Dates

Publication Date : December 31, 2020

APA Karasu, B , Oytaç, Z , Ergani̇, E , Buluç, A . (2020). Solar glass panels: A review . Avrupa Bilim ve Teknoloji Dergisi , (20) , 548-565 . DOI: 10.31590/ejosat.746056