Research Article
BibTex RIS Cite

Evaluation Of Time Domain Features Of The Acceleration Signals Recorded During The Walk To Determine The Risk Of Falling In The Elderly

Year 2020, Issue: 20, 367 - 373, 31.12.2020
https://doi.org/10.31590/ejosat.748156

Abstract

Fall in elderly is a health problem as a result of the anatomical and physiological changes in the body with aging. According to the world health organization, falling is the most important health problem in the elderly. In addition to physical injury and the psychological effects of fear of falling in elderly, the fall also has economic effects on the patient and society. With the developments of health system in the world, this effect will become more evident with the rapid increase in the life span of individuals. However, these negative effects can be reduced by preventing falls in the elderly. The effective method to reduce the fall in the elderly is to predict the fall and take the necessary prevents. In order to predict the fall, balance of elderly should be evaluated in routine controls. For this, it is important to develop a simple, cheap and reliable balance assessment method that can be used in primary health care centers. Accelerometers, which are frequently used in physical activity monitoring and evaluations such as posture and movement classification, energy expenditure estimation, instantaneous fall detection can be easily used for the assessment of fall risk in the elderly. In this study, it was aimed to find out the parameters that define the risk of falling in the elderly by using one-minute three-axis acceleration signals recorded during walking on flat ground from 71 elderly (38 control 35 with risk of falling) between 65 and 87 years of age. First, the component from gravity was removed from the recorded acceleration signal, then high frequency noises were removed with a filter at 0.5Hz-5Hz. After the noise removal process, recordings were divided into steps and normalized and feature extraction process was started. Unlike the literature, time-domain features that were not used for the risk of falling in the elderly were also evaluated. The properties were compared statically at 99% reliability level. As a result, the cadence, stride duration, double stride duration, which were found to be significantly different in the literature, showed a significant difference between control and falling groups in our study too. In addition, it was found that there is a significant difference in skewness, interquartile range, average absolute deviation and dynamic time-wrapping that were not used in the previous studies to evaluate the risk of falling. In our study, all time domain properties that can be obtained from acceleration signals were evaluated to determine the risk of falling. As a result, it has been demonstrated that four new time domain features not previously used for assessment of falling risk in the literature can be used to determine the risk of falling. 

References

  • Balaban, Ö., Nacır, B., Erdem, H. R., & Karagöz, A. (2009). Denge Fonksiyonunun De¤erlendirilmesi. Journal of Physical Medicine and Rehabilitation Sciences, 12(9), 133-139.
  • Barden, J. M., Clermont, C. A., Kobsar, D., & Beauchet, O. (2016). Accelerometer-Based Step Regularity Is Lower in Older Adults with Bilateral Knee Osteoarthritis. Frontiers in Human Neuroscience, 10. doi:ARTN 62510.3389/fnhum.2016.00625
  • Bellanca, J. L., Lowry, K. A., VanSwearingen, J. M., Brach, J. S., & Redfern, M. S. (2013). Harmonic ratios: A quantification of step to step symmetry. Journal of Biomechanics, 46(4), 828-831. Retrieved from <Go to ISI>://WOS:000315973700029
  • Castellini, G., Gianola, S., Stucovitz, E., Tramacere, I., Banfi, G., & Moja, L. (2019). Diagnostic test accuracy of an automated device as a screening tool for fall risk assessment in community-residing elderly: A STARD compliant study. Medicine (Baltimore), 98(39), e17105. doi:10.1097/MD.0000000000017105
  • Diego Galar, U. K. (2017). eMaintenance (U. K. Diego Galar Ed.): Academic Press.
  • Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., . . . Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), E215-220. doi:10.1161/01.cir.101.23.e215
  • Howcroft, J., Kofman, J., & Lemaire, E. D. (2013). Review of fall risk assessment in geriatric populations using inertial sensors. Journal of Neuroengineering and Rehabilitation, 10. doi:Artn 9110.1186/1743-0003-10-91
  • Howcroft, J., Kofman, J., & Lemaire, E. D. (2017a). Feature selection for elderly faller classification based on wearable sensors. Journal of Neuroengineering and Rehabilitation, 14. doi:ARTN 4710.1186/s12984-017-0255-9
  • Howcroft, J., Kofman, J., & Lemaire, E. D. (2017b). Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors. Ieee Transactions on Neural Systems and Rehabilitation Engineering, 25(10), 1812-1820. doi:10.1109/Tnsre.2017.2687100 Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. Ieee Transactions on Information Technology in Biomedicine, 10(1), 156-167. doi:10.1109/Titb.2005.856864
  • Koyuncu, G., Tuna, F., Yavuz, S., Kabayel, D. D., Koyuncu, M., Özdemir, H., & N., S. (2017). The last station before fracture: Assessment of falling and loss of balance in elderly. Turk J Phys Med Rehab, 63(1), 9. doi:10.5606/tftrd.2017.90757
  • Mathie, M. J., Coster, A. C. F., Lovell, N. H., & Celler, B. G. (2004). Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiological Measurement, 25(2), R1-R20. Retrieved from <Go to ISI>://WOS:000221075000001
  • Moncada, L. V. V., & Mire, L. G. (2017). Preventing Falls in Older Persons. American Family Physician, 96(4), 240-247. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28925664
  • Najafi, B., Aminian, K., Loew, F., Blanc, Y., & Robert, P. A. (2002). Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. Ieee Transactions on Biomedical Engineering, 49(8), 843-851. doi:10.1109/Tbme.2002.800763
  • Pires IM, G. N., Pombo N, Flórez-Revuelta F, Spinsante S, Canavarro Teixeira M, Zdravevski E. . (2019). Pattern Recognition Techniques for the Identification of Activities of Daily Living using Mobile Device Accelerometer. PeerJ Preprints, 7. doi:https://doi.org/10.7287/peerj.preprints.27225v2
  • Sun, T. L., & Huang, C. H. (2019). Interactive visualization to assist fall-risk assessment of community-dwelling elderly people. Information Visualization, 18(1), 33-44. doi:10.1177/1473871617721243
  • Weiss, A., Brozgol, M., Dorfman, M., Herman, T., Shema, S., Giladi, N., & Hausdorff, J. M. (2013). Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair, 27(8), 742-752. doi:10.1177/1545968313491004
  • WHO. (2007). WHO Global Report on Falls Prevention in Older Age. France: WHO Press.
  • Wu, C. H., Lee, C. H., Jiang, B. C., & Sun, T. L. (2019). Multiscale Entropy Analysis of Postural Stability for Estimating Fall Risk via Domain Knowledge of Timed-Up-And-Go Accelerometer Data for Elderly People Living in a Community. Entropy, 21(11). doi:ARTN 107610.3390/e21111076
  • Yang, C. C., & Hsu, Y. L. (2010). A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors (Basel), 10(8), 7772-7788. doi:10.3390/s100807772

Yaşlılarda Düşme Riskinin Belirlenmesi İçin Yürüyüş Esnasında Kayıt Edilen İvmelenme Sinyallerinin Zaman Domeni Özelliklerinin Degerlendirilmesi

Year 2020, Issue: 20, 367 - 373, 31.12.2020
https://doi.org/10.31590/ejosat.748156

Abstract

Yaşlanmayla birlikte vücutta meydana gelen anatomik ve fizyolojik değişimlerin bir sonucu olarak yaşlı bireylerde düşme bir sağlık problemi olarak karşımıza çıkmaktadır. Dünya sağlık örgütüne göre düşme yaşlılarda görülen en önemli sağlık problemidir. Düşmenin yaşlının fiziksel olarak yaralanması ve düşme korkusunun getirdiği psikolojik etkinin yanında hastaya, aileye ve topluma ekonomik olarak etkileri vardır. Dünyada ve ülkemizde sağlık alanında meydana gelen gelişmelerle beraber bireylerin yaşam süresinin hızla artmasıyla bu etki daha da belirgin hale gelecektir. Ancak yaşlılarda düşmenin önlenmesi ile bu olumsuz etkiler azaltılabilir. Yaşlılarda düşmenin etkilerini azaltmak için etkili yöntem düşmenin önceden tahmin edilmesi ve gerekli önlemlerin alınmasıdır. Düşmenin önceden tahmin edilebilmesi için yaşlılarda rutin kontrollerinde dengenin değerlendirilmesi gerekmektedir. Bunun için birinci basamak sağlık kuruluşlarında kullanılabilecek basit, ucuz ve güvenilir bir denge değerlendirme metodunun geliştirilmesi önemlidir. Duruş ve hareket sınıflandırması, enerji harcama tahmini, anlık düşme tespiti ve denge kontrolü gibi fiziksel aktivite izleme ve değerlendirme araştırmalarında sıklıkla kullanılan ivmeölçerler yaşlılarda düşme riskinin değerlendirmesi için rahatlıkla kullanılabilir. Bu çalışmada yaşları 65 ile 87 arasında değişen 71 yaşlıdan (38 kontrol 35 düşme riski olan) düz zeminde yürüme esnasında kayıt edilen bir dakikalık üç eksen ivmelenme sinyalleri kullanılarak yaşlılarda düşme riskini tanımlayıcı parametreler bulunmaya çalışılmıştır. Önce kayıt edilen ivmelenme sinyalinden yer çekiminden kaynaklanan bileşen çıkarılmış, daha sonra 0.5Hz-5Hz bant geçiren filtreyle yüksek frekanslı gürültüler temizlenmiştir. Gürültü temizleme işleminden sonra bir dakikalık kayıtlar adımlara bölünmüş ve normalize edilerek özellik çıkarma işlemine geçilmiştir. Özellik çıkarma aşamasında literatürden farklı olarak daha önce yaşlılarda düşme riski için kullanılmayan zaman-domeni özellikleri de değerlendirilmeye alınmıştır. Elde edilen özellikler bağımsız-örneklem t-testi kullanılarak %99 güvenirlik seviyesinde karşılaştırılmıştır. Sonuç olarak literatürde anlamlı olarak farklı olduğu daha önceki çalışmalarda belirtilen kadans, adım süresi, çift adım süresi özellikleri benzer şekilde bizim çalışmamızda da kontrol ile düşen grupları arasında anlamlı farklılık göstermiştir. Ayrıca literatürde daha önce düşme riskinin değerlendirilmesi için yapılan çalışmalarda kullanılmayan çarpıklık, çeyrekler arası aralık, ortalama mutlak sapma ve dinamik zaman atlama özelliklerinde de anlamlı farklılık olduğu görülmüştür. Çalışmamızda ivmelenme sinyallerinden elde edilebilecek bütün zaman domeni özellikleri düşme riskinin belirlenmesi için değerlendirilmiştir. Sonuç olarak literatürde daha önce düşme riski için kullanılmayan dört yeni zaman domeni özelliğinin düşme riskini belirlemede kullanılabileceği ortaya konmuştur.

Supporting Institution

Necmettin Erbakan Universitesi

References

  • Balaban, Ö., Nacır, B., Erdem, H. R., & Karagöz, A. (2009). Denge Fonksiyonunun De¤erlendirilmesi. Journal of Physical Medicine and Rehabilitation Sciences, 12(9), 133-139.
  • Barden, J. M., Clermont, C. A., Kobsar, D., & Beauchet, O. (2016). Accelerometer-Based Step Regularity Is Lower in Older Adults with Bilateral Knee Osteoarthritis. Frontiers in Human Neuroscience, 10. doi:ARTN 62510.3389/fnhum.2016.00625
  • Bellanca, J. L., Lowry, K. A., VanSwearingen, J. M., Brach, J. S., & Redfern, M. S. (2013). Harmonic ratios: A quantification of step to step symmetry. Journal of Biomechanics, 46(4), 828-831. Retrieved from <Go to ISI>://WOS:000315973700029
  • Castellini, G., Gianola, S., Stucovitz, E., Tramacere, I., Banfi, G., & Moja, L. (2019). Diagnostic test accuracy of an automated device as a screening tool for fall risk assessment in community-residing elderly: A STARD compliant study. Medicine (Baltimore), 98(39), e17105. doi:10.1097/MD.0000000000017105
  • Diego Galar, U. K. (2017). eMaintenance (U. K. Diego Galar Ed.): Academic Press.
  • Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., . . . Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), E215-220. doi:10.1161/01.cir.101.23.e215
  • Howcroft, J., Kofman, J., & Lemaire, E. D. (2013). Review of fall risk assessment in geriatric populations using inertial sensors. Journal of Neuroengineering and Rehabilitation, 10. doi:Artn 9110.1186/1743-0003-10-91
  • Howcroft, J., Kofman, J., & Lemaire, E. D. (2017a). Feature selection for elderly faller classification based on wearable sensors. Journal of Neuroengineering and Rehabilitation, 14. doi:ARTN 4710.1186/s12984-017-0255-9
  • Howcroft, J., Kofman, J., & Lemaire, E. D. (2017b). Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors. Ieee Transactions on Neural Systems and Rehabilitation Engineering, 25(10), 1812-1820. doi:10.1109/Tnsre.2017.2687100 Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. Ieee Transactions on Information Technology in Biomedicine, 10(1), 156-167. doi:10.1109/Titb.2005.856864
  • Koyuncu, G., Tuna, F., Yavuz, S., Kabayel, D. D., Koyuncu, M., Özdemir, H., & N., S. (2017). The last station before fracture: Assessment of falling and loss of balance in elderly. Turk J Phys Med Rehab, 63(1), 9. doi:10.5606/tftrd.2017.90757
  • Mathie, M. J., Coster, A. C. F., Lovell, N. H., & Celler, B. G. (2004). Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiological Measurement, 25(2), R1-R20. Retrieved from <Go to ISI>://WOS:000221075000001
  • Moncada, L. V. V., & Mire, L. G. (2017). Preventing Falls in Older Persons. American Family Physician, 96(4), 240-247. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28925664
  • Najafi, B., Aminian, K., Loew, F., Blanc, Y., & Robert, P. A. (2002). Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. Ieee Transactions on Biomedical Engineering, 49(8), 843-851. doi:10.1109/Tbme.2002.800763
  • Pires IM, G. N., Pombo N, Flórez-Revuelta F, Spinsante S, Canavarro Teixeira M, Zdravevski E. . (2019). Pattern Recognition Techniques for the Identification of Activities of Daily Living using Mobile Device Accelerometer. PeerJ Preprints, 7. doi:https://doi.org/10.7287/peerj.preprints.27225v2
  • Sun, T. L., & Huang, C. H. (2019). Interactive visualization to assist fall-risk assessment of community-dwelling elderly people. Information Visualization, 18(1), 33-44. doi:10.1177/1473871617721243
  • Weiss, A., Brozgol, M., Dorfman, M., Herman, T., Shema, S., Giladi, N., & Hausdorff, J. M. (2013). Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair, 27(8), 742-752. doi:10.1177/1545968313491004
  • WHO. (2007). WHO Global Report on Falls Prevention in Older Age. France: WHO Press.
  • Wu, C. H., Lee, C. H., Jiang, B. C., & Sun, T. L. (2019). Multiscale Entropy Analysis of Postural Stability for Estimating Fall Risk via Domain Knowledge of Timed-Up-And-Go Accelerometer Data for Elderly People Living in a Community. Entropy, 21(11). doi:ARTN 107610.3390/e21111076
  • Yang, C. C., & Hsu, Y. L. (2010). A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors (Basel), 10(8), 7772-7788. doi:10.3390/s100807772
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sabri Altunkaya 0000-0002-0853-0095

Publication Date December 31, 2020
Published in Issue Year 2020 Issue: 20

Cite

APA Altunkaya, S. (2020). Yaşlılarda Düşme Riskinin Belirlenmesi İçin Yürüyüş Esnasında Kayıt Edilen İvmelenme Sinyallerinin Zaman Domeni Özelliklerinin Degerlendirilmesi. Avrupa Bilim Ve Teknoloji Dergisi(20), 367-373. https://doi.org/10.31590/ejosat.748156