Research Article
BibTex RIS Cite

Hidrofoilli Teknelerde Kullanılan Su Altı Kanat Yapılarındaki Serbest Yüzey Etkileşimlerinin Sınır Elemanları Yöntemi ile İncelenmesi

Year 2020, Issue: 20, 572 - 580, 31.12.2020
https://doi.org/10.31590/ejosat.768325

Abstract

Hidrofoilli tekneler, ek kaldırma kuvveti oluşturmak amacıyla serbest yüzey altında ilerleyen kanatlar kullanır. Tekne yüzeyinin bir uzantısı olan kanatlar tarafından oluşturulan kaldırma kuvveti, tekneyi yukarı yönde iterek deplasman hacminin -ve dolayısıyla- direncin azalmasını sağlarlar. Serbest yüzeyin oldukça yakınında çalışan bu tarz kanat yapılarının performansının belirlenmesinde, serbest yüzeyle girecekleri etkileşimlerin de rol oynaması beklenir. Bu çalışmada, su altında ilerleyen iki boyutlu bir NACA 0012 kanat kesitinin performansı ve serbest yüzey etkileşimleri sayısal olarak incelenmiştir. Bu amaçla, serbest yüzeyden bir kort boyu mesafede bulunan kesitli kanat etrafındaki akım, geniş bir Froude sayısı aralığında potansiyel akım temelli iteratif sınır elemanları yöntemi kullanarak modellenmiştir. Kullanılan yöntemin matematiksel ayrıntıları detaylı bir biçimde sunulmuştur. Çalışma sonucunda, serbest yüzey yakınında çalışmanın kanat kesiti üzerinde oluşan kaldırma ve direnç kuvvetlerini önemli ölçüde etkilediği gözlenmiş ve bu kuvvetlerin değişimi Froude sayısına bağlı olarak incelenmiştir. Ayrıca, kanat tarafından serbest yüzey deformasyonları oluşturulduğu belirlenmiş, oluşan dalga genliğinin Froude Sayısına bağlı olarak arttığı görülmüştür.

Supporting Institution

Çanakkale Onsekiz Mart Universitesi, Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

FBA-2019-2984

Thanks

Bu çalışma, Çanakkale Onsekiz Mart Universitesi, Bilimsel Araştırma Projeleri Koordinatörlüğü Tarafından FBA-2019-2984 proje numarası ile desteklenmiştir.

References

  • Abbott, I. H. and Von Doenhoff, (1959). A. E.: Theory of Wing Sections, Dover Publications, New York
  • Ali, A., Karim, M. (2013). Numerical Study Of Free Surface Effect On The Flow Around Shallowly Submerged Hydrofoils. Proceedings of MARTEC 2010 The International Conference on Marine Technology, 11-12 December 2010, BUET, Dhaka, Bangladesh
  • Hoque, A.,Karim, M., Rahman, A.,( 2017). Simulation of Water Wave Generated by Shallowly Submerged Asymmetric Hydrofoil, Procedia Engineering, Volume 194, pp 38-43
  • Bakirci, M. (2020). Kama Şekilli Kanat Üzerindeki Süpersonik Akışı Çözmek için Sayısal Bir Algoritma. European Journal of Science and Technology, (18), pp. 934–942. doi: 10.31590/ejosat.706738. https://dergipark.org.tr/tr/pub/ejosat/issue/52599/706738
  • Bal, S., Kinnas, S. A. and Lee, Hee.(2001). Numerical Analysis of 2-D and 3-D Cavitating Hydrofoils Under a Free Surface, Journal of Ship Research, Vol. 45, No:1, pp. 34-49.
  • Bal, S., (1999). A potential based panel method for 2-D hydrofoils, Ocean Engineering, Vol. 26, pp. 343-361.
  • Bal, S., (2007). High-speed submerged and surface piercing cavitating hydrofoils, including tandem case, Ocean Engineering, Volume 34, Issues 14–15, Pages 1935-1946
  • Bal, S., (2011). The effect of finite depth on 2D and 3D cavitating hydrofoils, J Mar Sci Technology, Vol. 16, No: 2, pp.129-142.
  • Chen, S.L., Yang, S., & Ma, Q. (2011). An Experimental Study on Hydrodynamic Characteristics of Gliding-Hydrofoil Craft, Journal of Marine Science and Technology, Vol. 19, No. 1, pp. 89-96
  • Duncan, J. H., (1983). The breaking and non-breaking wave resistance of a two-dimensional hydrofoil, J. Fluid Mech., Vol. 126, pp. 507-520.
  • Eleni, D. C., Athanasios, T. I. and Dionissios, P. M.,(2012). Evaluation of turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA 0012) airfoil, Journal of Mechanical Engineering Research, Vol. 4, No:3, pp. 100-111.
  • Ghassemi, H., Iranmanesh, M. and Ardeshir, A.,(2010). Simulation of Free Surface Wave Pattern Due To The Moving Bodies, Iranian Journal of Science & Technology, Transaction B: Engineering, Vol. 34, pp. 117-134.
  • Karaalioğlu, M , Bal, Ş . (2015). Numerical Investigation Cavitation Buckets for Hydrofoil Parametrically. Turkish Journal of Maritime and Marine Sciences , 1 (2) , 89-101. https://dergipark.org.tr/tr/pub/trjmms/issue/40138/477489
  • Karaalioğlu, M , Bal, Ş . (2017). Some Remarks on the Three Dimensionality of Hydrofoil Cavitation. Turkish Journal of Maritime and Marine Sciences , 3 (2) , 113-120 https://dergipark.org.tr/tr/pub/trjmms/issue/40149/477568
  • Karim, Md. M. and Ahammed, M. S., (2012). Numerical study of periodic cavitating flow around NACA 0012 hydrofoil. Ocean Engineering, Vol. 55, pp. 81-87.
  • Karim, Md. M., Prasad, B. and Rahman, N.,(2014). Numerical simulation of free surface water wave for the flow around NACA 0015 hydrofoil using the volume of fluid (VOF) method, Ocean Engineering, Vol. 78, pp. 89-94. Katsikadelis, J. T. (2002).Boundary Elements: Theory and Applications, Elsevier, New York,
  • Körpe, D. S., Kanat, Ö. Ö. and Oktay, T. (2019). Başlangıç y plus Değerinin Etkileri: γ-Reθ SST Türbülans Modeli Kullanılarak 3D NACA 4412 Kanadının Sayısal Analizi. European Journal of Science and Technology, (17), pp. 692–702. doi: 10.31590/ejosat.631135. https://dergipark.org.tr/tr/pub/ejosat/issue/48495/631135
  • Lee, T. M., Park, I. R., Chun, H. H. and Lee, S. J., (2000). Effect of free surface and strut on fins attached to a strut, Ocean Engineering, Vol. 28, pp. 159-177.
  • Newman, J. N.,(1977). Marine Hydrodynamics. MIT Press, Cambridge,
  • Ni, Z., Dhanak, M., Su, T.C.,(2019). Performance of a slotted hydrofoil operating close to a free surface over a range of angles of attack, Ocean Engineering, vol 188, pp. 106296
  • Oktay, T. and Kanat, Ö. Ö. (2019). NACA 4412 Kanadı Üzerinde Bir Emme Kanalı Tasarlanmasının Aerodinamik Etkileri. European Journal of Science and Technology, (17), pp. 1001–1007. doi: 10.31590/ejosat.651523. https://dergipark.org.tr/tr/pub/ejosat/issue/48495/651523
  • Tarafder, M. S., Saha, K. G. and Mehedi, T. S.(2010). Analysis of potential flow around three-dimensional hydrofoils by combined source and dipole based panel methods, Journal of Marine Science and Technology, Vol. 18, No: 3, pp. 376-384.
  • Tarafder, Md. S. and Suzuki, K., (2007). Computation of wave-making resistance of a catamaran in deep water using a potential-based panel method, Ocean Engineering, Vol. 34, pp. 1892-1900.
  • Tarafder, Md. S., Khalil, G. Md. and Islam, R. M., (2009). Analysis of potential flow around two-dimensional hydrofoil by source based lower and higher order panel methods, The Institution of Engineers Malaysia, Vol. 71, No:2, pp. 13-21.
  • Uslu, Y. and Bal, S., (2008). Numerical Prediction of Wave Drag of 2-D and 3-D Bodies under or on a Free Surface, Turkish J. Eng. Env. Sci., Vol. 32, pp. 177-188.
  • Wehausen, J.V. and Laitone, E. V.,( 1960). Surface waves, Handbuch der Physih,
  • Wu, P. C. and Chen, J. H.( 2016). Numerical study on cavitating flow due to a hydrofoil near a free surface, Journal of Ocean Engineering and Science, Volume 1 (3), pp. 238-245

Evaluation of Free Surface Interaction of a Submerged Hydrofoil using Boundary Element Method

Year 2020, Issue: 20, 572 - 580, 31.12.2020
https://doi.org/10.31590/ejosat.768325

Abstract

Hydrofoil crafts use submerged foils to gain additional lift force. Lift produced by the submerged foils push the hull upwards and let the drag of the body decrease by lowering the displacement. Free surface interactions effects the performance of the foils, which are travelling close to the surface. In this study, performance and free surface deformations of a two dimensional NACA0012 foil section, which is one chord length beneath the free surface is investigated numerically. Potential flow based iterative boundary element method is adopted, to predict the flow field. Mathematical formulation and numerical implementation of the present method is presented in detail. Numerical results reveals that, free surface has a significant impact on the lift force and wave drag of the foil. Variation of these forces with Froude number is presented. Besides, it is observed that, foil generates deformations on the free surface and the wave amplitudes increase with Froude Number. 

Project Number

FBA-2019-2984

References

  • Abbott, I. H. and Von Doenhoff, (1959). A. E.: Theory of Wing Sections, Dover Publications, New York
  • Ali, A., Karim, M. (2013). Numerical Study Of Free Surface Effect On The Flow Around Shallowly Submerged Hydrofoils. Proceedings of MARTEC 2010 The International Conference on Marine Technology, 11-12 December 2010, BUET, Dhaka, Bangladesh
  • Hoque, A.,Karim, M., Rahman, A.,( 2017). Simulation of Water Wave Generated by Shallowly Submerged Asymmetric Hydrofoil, Procedia Engineering, Volume 194, pp 38-43
  • Bakirci, M. (2020). Kama Şekilli Kanat Üzerindeki Süpersonik Akışı Çözmek için Sayısal Bir Algoritma. European Journal of Science and Technology, (18), pp. 934–942. doi: 10.31590/ejosat.706738. https://dergipark.org.tr/tr/pub/ejosat/issue/52599/706738
  • Bal, S., Kinnas, S. A. and Lee, Hee.(2001). Numerical Analysis of 2-D and 3-D Cavitating Hydrofoils Under a Free Surface, Journal of Ship Research, Vol. 45, No:1, pp. 34-49.
  • Bal, S., (1999). A potential based panel method for 2-D hydrofoils, Ocean Engineering, Vol. 26, pp. 343-361.
  • Bal, S., (2007). High-speed submerged and surface piercing cavitating hydrofoils, including tandem case, Ocean Engineering, Volume 34, Issues 14–15, Pages 1935-1946
  • Bal, S., (2011). The effect of finite depth on 2D and 3D cavitating hydrofoils, J Mar Sci Technology, Vol. 16, No: 2, pp.129-142.
  • Chen, S.L., Yang, S., & Ma, Q. (2011). An Experimental Study on Hydrodynamic Characteristics of Gliding-Hydrofoil Craft, Journal of Marine Science and Technology, Vol. 19, No. 1, pp. 89-96
  • Duncan, J. H., (1983). The breaking and non-breaking wave resistance of a two-dimensional hydrofoil, J. Fluid Mech., Vol. 126, pp. 507-520.
  • Eleni, D. C., Athanasios, T. I. and Dionissios, P. M.,(2012). Evaluation of turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA 0012) airfoil, Journal of Mechanical Engineering Research, Vol. 4, No:3, pp. 100-111.
  • Ghassemi, H., Iranmanesh, M. and Ardeshir, A.,(2010). Simulation of Free Surface Wave Pattern Due To The Moving Bodies, Iranian Journal of Science & Technology, Transaction B: Engineering, Vol. 34, pp. 117-134.
  • Karaalioğlu, M , Bal, Ş . (2015). Numerical Investigation Cavitation Buckets for Hydrofoil Parametrically. Turkish Journal of Maritime and Marine Sciences , 1 (2) , 89-101. https://dergipark.org.tr/tr/pub/trjmms/issue/40138/477489
  • Karaalioğlu, M , Bal, Ş . (2017). Some Remarks on the Three Dimensionality of Hydrofoil Cavitation. Turkish Journal of Maritime and Marine Sciences , 3 (2) , 113-120 https://dergipark.org.tr/tr/pub/trjmms/issue/40149/477568
  • Karim, Md. M. and Ahammed, M. S., (2012). Numerical study of periodic cavitating flow around NACA 0012 hydrofoil. Ocean Engineering, Vol. 55, pp. 81-87.
  • Karim, Md. M., Prasad, B. and Rahman, N.,(2014). Numerical simulation of free surface water wave for the flow around NACA 0015 hydrofoil using the volume of fluid (VOF) method, Ocean Engineering, Vol. 78, pp. 89-94. Katsikadelis, J. T. (2002).Boundary Elements: Theory and Applications, Elsevier, New York,
  • Körpe, D. S., Kanat, Ö. Ö. and Oktay, T. (2019). Başlangıç y plus Değerinin Etkileri: γ-Reθ SST Türbülans Modeli Kullanılarak 3D NACA 4412 Kanadının Sayısal Analizi. European Journal of Science and Technology, (17), pp. 692–702. doi: 10.31590/ejosat.631135. https://dergipark.org.tr/tr/pub/ejosat/issue/48495/631135
  • Lee, T. M., Park, I. R., Chun, H. H. and Lee, S. J., (2000). Effect of free surface and strut on fins attached to a strut, Ocean Engineering, Vol. 28, pp. 159-177.
  • Newman, J. N.,(1977). Marine Hydrodynamics. MIT Press, Cambridge,
  • Ni, Z., Dhanak, M., Su, T.C.,(2019). Performance of a slotted hydrofoil operating close to a free surface over a range of angles of attack, Ocean Engineering, vol 188, pp. 106296
  • Oktay, T. and Kanat, Ö. Ö. (2019). NACA 4412 Kanadı Üzerinde Bir Emme Kanalı Tasarlanmasının Aerodinamik Etkileri. European Journal of Science and Technology, (17), pp. 1001–1007. doi: 10.31590/ejosat.651523. https://dergipark.org.tr/tr/pub/ejosat/issue/48495/651523
  • Tarafder, M. S., Saha, K. G. and Mehedi, T. S.(2010). Analysis of potential flow around three-dimensional hydrofoils by combined source and dipole based panel methods, Journal of Marine Science and Technology, Vol. 18, No: 3, pp. 376-384.
  • Tarafder, Md. S. and Suzuki, K., (2007). Computation of wave-making resistance of a catamaran in deep water using a potential-based panel method, Ocean Engineering, Vol. 34, pp. 1892-1900.
  • Tarafder, Md. S., Khalil, G. Md. and Islam, R. M., (2009). Analysis of potential flow around two-dimensional hydrofoil by source based lower and higher order panel methods, The Institution of Engineers Malaysia, Vol. 71, No:2, pp. 13-21.
  • Uslu, Y. and Bal, S., (2008). Numerical Prediction of Wave Drag of 2-D and 3-D Bodies under or on a Free Surface, Turkish J. Eng. Env. Sci., Vol. 32, pp. 177-188.
  • Wehausen, J.V. and Laitone, E. V.,( 1960). Surface waves, Handbuch der Physih,
  • Wu, P. C. and Chen, J. H.( 2016). Numerical study on cavitating flow due to a hydrofoil near a free surface, Journal of Ocean Engineering and Science, Volume 1 (3), pp. 238-245
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yavuz Hakan Ozdemir 0000-0002-0406-0532

Taner Çoşgun 0000-0002-1364-0133

Project Number FBA-2019-2984
Publication Date December 31, 2020
Published in Issue Year 2020 Issue: 20

Cite

APA Ozdemir, Y. H., & Çoşgun, T. (2020). Hidrofoilli Teknelerde Kullanılan Su Altı Kanat Yapılarındaki Serbest Yüzey Etkileşimlerinin Sınır Elemanları Yöntemi ile İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(20), 572-580. https://doi.org/10.31590/ejosat.768325