Year 2020, Volume , Issue 20, Pages 685 - 692 2020-12-31

Characterization of Graphene Oxide and Sea Shell Reinforced Polyvinyl Chloride Hybrid Composites
Grafen Oksit ve Deniz Kabuğu Takviyeli Polivinil Klorür Hibrit Kompozitlerin Karakterizasyonu

Meryem GÖKTAŞ [1] , Ferda MİNDİVAN [2]


Among the graphene derivatives, especially graphene oxide (GO); It is a widely used filler for composite applications due to its easy synthesis, large surface area and antibacterial properties. Sea shell wastes are rich resources which consist of more than 95% calcium carbonate (CaCO3) and organic materials which could be produced 1-5% harmful gases to the environment and human health. In this study, it was aimed to produce polyvinyl chloride (PVC) hybrid composites in order to utility from the excellent properties of GO and to recycle sea shell wastes and to characterize their structural properties. For this purpose, the hybrid composites containing 5, 10, 15 and 20 wt.% of milled sea shell powders (DK) and 0.1 wt.% of GO filled were fabricated by colloidal blending method. In the XRF analysis of DK, it was determined that the highest oxide content was calcium oxide (CaO) 98.53 wt.%. According to XRD analysis, hybrid composites with low DK content (5 wt.% -10 wt.%) showed similar results with interlayer distance, crystallite size and micro strain values of PVC-GO composite. XRD patterns of the hybrid composites with high DK content (15 wt.% and 20 wt.%) showed that graphene peak was not observed except calcite and aragonite phase peaks. As a result, the high DK content caused to exfoliate of graphene in the PVC matrix successfully. DK and GO acted as nucleation centers at 20 wt.% DK content and therefore PVC-GO/DK20% hybrid composite had the highest crystal size and the lowest micro-stress values. FTIR analysis results confirmed that aragonite was the dominant crystal form in the hybrid composites. SEM and EDX analyzes had presented homogeneous distributions of DK and GO in polymer matrix and smooth surface images of hybrid composites.
Grafen türevleri içerisinde özellikle grafen oksit (GO); kolay sentezi, geniş yüzey alanı ve antibakteriyel özellikleri nedeniyle kompozit uygulamaları için yaygın olarak kullanılan bir dolgu maddesidir. Deniz kabuğu atıkları % 95'in üzerinde kalsiyum karbonat (CaCO3) ve çevreye ve insan sağlığına % 1-5 oranında zararlı gazlar üretebilen organik maddelerden oluşan zengin kaynaklardır. Bu çalışmada hem GO’nun mükemmel özelliklerinden yararlanmak hem de deniz kabuğu atıklarının geri dönüşümünü sağlamak için polivinil klorür (PVC) hibrit kompozitlerin üretilmesi ve yapısal özelliklerinin karakterize edilmesi amaçlanmıştır. Bu amaçla ağırlıkça (ağ.) % 5, 10, 15 ve 20 öğütülmüş deniz kabuğu tozları (DK) ve ağ. % 0.1 dolgulu GO içeren hibrit kompozitler, koloidal karıştırma yöntemi ile üretilmiştir. DK’nın XRF analizinde en yüksek oksit içeriğinin ağ. % 98.53 oranında CaO’ den oluştuğu belirlenmiştir. XRD analizinde düşük DK içeriğinde (ağ. %5-%10) hibrit kompozitlerin, tabakalar arası mesafe, kristal boyut ve mikro gerilme değerleri PVC-GO kompoziti ile benzer sonuçlar göstermiştir. Yüksek DK içerikli (ağ. % 15 ve % 20) hibrit kompozitlerin XRD paternleri, kalsit ve aragonit faz piklerinin dışında grafen pikinin gözlenmediğini göstermiştir. Sonuç olarak, yüksek DK içeriği, grafenin PVC matrisinde başarıyla eksfoliye olmasına sebep olmuştur. %20 DK içeriğinde, DK ve GO’nun çekirdeklenme merkezleri olarak davranması, PVC-GO/DK%20 hibrit kompozitinin en yüksek kristal boyut değerine ve en düşük mikro gerilme değerine sahip olmasına neden olmuştur. FTIR analiz sonuçları, hibrit kompozitlerde baskın kristal formunun aragonit olduğunu doğrulamıştır. SEM ve EDX analizleri, DK ve GO'nun polimer matrisinde homojen dağılımlarını ve hibrit kompozitlerin pürüzsüz yüzey görüntülerini sunmuştur.
  • 1. Kim. S., Hee Ku, S., Yoon Lim, S., Hong Kim, J. & Beum Park, C. (2011). Graphene–Biomineral Hybrid Materials. Adv. Mater., 23, 2009–2014. DOI: https://doi.org/10.1002/adma.201100010.
  • 2. Bagherinia, M.A., Sheydaei, M. & Giahi, M. (2017). Graphene oxide as a compatibilizer for polyvinyl chloride/rice straw composites. J Polym Eng, 37(7),661–70. DOI: https://doi.org/10.1515/polyeng-2016-0249.
  • 3. Croitoru, C., Spirchez, C., Cristea, D., Lunguleasa, A., Pop, M.A., Bedo, T., Roata, I.C. & Luca, M.A. (2018). Calcium carbonate and wood reinforced hybrid PVC composites. J Appl Polym Sci, 135(22), 46317. DOI: https://doi.org/10.1002/app.46317.
  • 4. Pulngern, T., Padyenchean, C., Rosarpitak, V., Prapruit, W. & Sombatsompop, N. (2011). Flexural and creep strengthening for wood/PVC composite members using flat bar strips. Mater Des, 32(6), 3431–9. DOI: https://doi.org/10.1016/j.matdes.2011.02.005.
  • 5. Sundstøl, F. & Owen, E. (1984). Straw and Other Fibrous By-products as Feed. Elsevier Science Publishers B.V, Amsterdam/New York, 610pp.
  • 6. Yao, F., Wu, Q., Lei, Y. & Xu Y., (2008). Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading. Ind Crops Prod, 28(1), 63–72. DOI: https://doi.org/ 10.1016/j.indcrop.2008.01.007.
  • 7. Mindivan, F. & M. Göktaş (2019). Preparation of new PVC composite using green reduced graphene oxide and its effects in thermal and mechanical properties. Polymer Bulletin, 2019, 1–21. DOI: https://doi.org/10.1007/s00289-019-02831-x.
  • 8. Hummers, W.S. & Offeman, R.E.(1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339. DOI: https://doi.org/10.1021/ja01539a017.
  • 9. Mindivan, F. (2017). Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability. Materials Testing, 59( 9), 729-734. DOI:10.3139/120.111063.
  • 10. Fombuena, V. , Bernardi, L. , Fenollar, O. , Boronat, T. & Balart, R. (2014). Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes. Materials and Design, 57, 168–174. DOI: https://doi.org/10.1016/j.matdes.2013.12.032.
  • 11. Moustafa, H. Youssef, A.M. Duquesne, S. & Darwish, N.A. (2015). Characterization of Bio-Filler Derived From Seashell Wastes and its Effect on the Mechanical, Thermal, and Flame Retardant Properties of ABS Composites. Polymer Composites, 38, 2788–2797. DOI: https://doi.org/10.1002/pc.23878.
  • 12. Sonawane, S.H, Shirsath, S.R., Khanna, P.K., Pawar, S., Mahajan, C.M. Paithankar, V., Shinde,. V. & Kapadnis, C.V. (2008). An innovative method for effective micro-mixing of CO2 gas during synthesis of nano-calcite crystal using sonochemical carbonization. Chem. Eng. J., 143, 308–313. DOI: https://doi.org/10.1016/j.cej.2008.05.030.
  • 13. Donnelly, F.C., Purcell-Milton, F., Framont, V., Cleary, O., Dunne, P.W. & Gun’ko, Y.K. (2017). Synthesis of CaCO3 nano- and micro-particles by dry ice carbonation. Chem. Commun., 53, 6657–6660. DOI: https://doi.org/10.1039/C7CC01420A.
  • 14. Gunasekaran, S., Anbalagan, G. & Pandi S. (2006). Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc., 37, 892–899. DOI: https://doi.org/10.1002/jrs.1518.
  • 15. Price, G., Mahon, M., Shannon, J. & Cooper, C. (2011). Composition of calcium carbonate polymorphs precipitated using ultrasound. Cryst. Growth Des.,11, 39–44. DOI: https://doi.org/10.1021/cg901240n.
  • 16. Ma, Y. & Feng, Q. (2011). Alginate hydrogel-mediated crystallization of calcium carbonate J. Solid State Chem., 184, 1008–1015. DOI:https://doi.org/10.1016/j.jssc.2011.03.008.
  • 17. Martı´nez-Garcı´a, C., Gonza´lez-Fonteboa, B., Martı´nez-Abella, F. &. Carro- Lo´pez, D. (2017). Performance of mussel shell as aggregate in plain concrete. Constr. Build. Mater., 139, 570-583.DOI:https://doi.org/10.1016/j.conbuildmat.2016.09.091.
  • 18. Boronat, C., Correcher, V., Virgos, M.D., & Garcia-Guinea, J. (2017). Ionising radiation effect on the luminescence emission of inorganic and biogenic calcium carbonates. Nuclear Instruments and Methods in Physics Research B, 401, 1–7. DOI:http://dx.doi.org/10.1016/j.nimb.2017.04.035.
  • 19. Islam, K.N., Bin Abu Bakar, M.Z., Ali, M.E, Bin Hussein, M.Z., Noordin, M.M., Loqman, M.Y. Miah, G., Wahid, H. & Hashim, U. (2013). A novel method for the synthesis of calcium carbonate (aragonite) nanoparticles from cockle shells. Powder Technology, 235, 70–75. DOI:https://doi.org/10.1016/j.powtec.2012.09.041.
  • 20. Romero, A., Lavin-Lopez, M.P., Sanchez Silva, L., Valverde, J.L. & Paton-Carrero, A. (2018). Comparative study of different scalable routes to synthesize graphene oxide and reduced graphene oxide. Materials Chemistry and Physics, 203, 284-292. DOI: https://doi.org/10.1016/j.matchemphys.2017.10.013.
  • 21. Chowdhury, S. & Balasubramanian, R. (2014). Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Advances in Colloid and Interface Science, 204, 35-56. DOI: https://doi.org/10.1016/j.cis.2013.12.005.
  • 22. Sharma, S. , Susan, D., Kothiyal, N.C. & Kaur, R. (2018). Graphene oxide prepared from mechanically milled graphite: effect on strength of novel fly-ash based cementitious matrix. Constr. Build. Mater., 177, 10–22. DOI:https://doi.org/10.1016/j.conbuildmat.2018.05.051.
  • 23. Lv, S., Ting, S., Liu, J., & Q., Zhou (2014). Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness. Cryst. Eng. Comm., 16, 8508–8516. DOI: https://doi.org/10.1039/c4ce00684d.
  • 24. Amangah, M. , Salami-Kalajahi, M. & Roghani-Mamaqani, H. (2018). Nanoconfinement effect of graphene on thermophysical properties and crystallinity of matrix-grafted graphene/crosslinked polysulfide polymer nanocomposites. Diamond and Related Materials, 83, 177–183. DOI: https://doi.org/10.1016/j.diamond.2018.02.012.
  • 25. Mindivan, F. (2015). The Synthesis, Thermal And Structural Characterization of Polyvinylchloride/Graphene Oxide (PVC/GO) Composites. International Scientific Journal "Materials Science. Non-Equılıbrıum Phase Transformatıons", 3, 33-36.
  • 26. Lakshmanna, B., Jayaraju, N., Lakshmi Prasad, T., Sreenivasulu, G., Nagalakshmi, K., Pramod Kumar, M., & Madakka, M. (2018). Data on Molluscan Shells in parts of Nellore Coast, southeast coast of India. Data in Brief , 16, 705–712. DOI: https://doi.org/10.1016/j.dib.2017.11.081.
  • 27. Islam, K.N., Bin Abu Bakar, M.Z., Ali, M.E., Bin Hussein, M. Z., Noordin, M.M., Loqman, M.Y., Miah, G., Wahid, H. & Hashim, U. (2013). A novel method for the synthesis of calcium carbonate (aragonite) nanoparticles from cockle shells. Powder Technology, 235, 70–75. DOI: https://doi.org/10.1016/j.powtec.2012.09.041.
  • 28. Huang, J., Liu, C., Xie, L., & Zhang, R. (2018). Amorphous calcium carbonate: A precursor phase for aragonite in shell disease of the pearl oyster. Biochemical and Biophysical Research Communications, 497, 102–107. DOI: https://doi.org/10.1016/j.bbrc.2018.02.031.
  • 29. Zhou, G.-T., Yao, Q.-Z., Ni, J., & Jin, G. (2009). Formation of aragonite mesocrystals and implication for biomineralization. American Mineralogist, 94, 293–302. DOI: https://doi.org/10.2138/am.2009.2957.
  • 30. Hoque, M.E., Shehryar, M. & Islam, K.N.(2013). Processing and Characterization of Cockle Shell Calcium Carbonate (CaCO3) Bioceramic for Potential Application in Bone Tissue Engineering. Journal of Material Sciences & Engineering, 2, 1-5. DOI: 10.4172/2169-0022.1000132.
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-6046-2456
Author: Meryem GÖKTAŞ (Primary Author)
Institution: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0003-1583-8300
Author: Ferda MİNDİVAN
Institution: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ
Country: Turkey


Supporting Institution Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri
Project Number 2019-02.BŞEÜ.11-01
Thanks Hazırlanan bu çalışma Bilecik Şeyh Edebali Üniversitesi tarafından desteklenen 2019-02.BŞEÜ.11-01 nolu Bilimsel araştırma projesinden türetilmiştir.
Dates

Publication Date : December 31, 2020

APA Göktaş, M , Mi̇ndi̇van, F . (2020). Grafen Oksit ve Deniz Kabuğu Takviyeli Polivinil Klorür Hibrit Kompozitlerin Karakterizasyonu . Avrupa Bilim ve Teknoloji Dergisi , (20) , 685-692 . DOI: 10.31590/ejosat.782828