Research Article
BibTex RIS Cite

Electrical Conductivity Investigation of Knitting Fabrics

Year 2020, Issue: 20, 854 - 858, 31.12.2020
https://doi.org/10.31590/ejosat.788982

Abstract

In this study, conductive fabrics were fabricated with using stainless steel yarn by knitting techniques. The knitted fabrics were produced four different constructions which are plain, stockinette stitch, 1x1 rib, and 2x2 rib knitting structure. After the knitting process, loop yarn length, stitch density, mass per unit area, thickness, porosity and conductivity of samples were measured. According to results, knitting parameters differ from fabric construction. Furthermore, fabric construction affects the porosity and electrical conductivity of samples. Plain knitting fabric sample has higher porosity than other samples. Compared with all knitting structures, electrical conductivity of 2x2 rib knitting fabric sample is higher than other fabric samples.

References

  • Cai, G., Xu, Z., Yang, M., Tang, B., & Wang, G. (2017). Functionalization of cotton fabrics through thermal reduction of graphene oxide. Applied Surface Science, 393 : 441–448.
  • Cheng, K.B., Cheng, T.W., Lee, K.C., Ueng, T.H., & Hsing, W.H. (2003). Effects of yarn constitutions and fabric specifications on electrical properties of hybrid woven fabrics, Composites Part A-Applied Science, 34(10) : 971-978.
  • Choi, S., & Jiang, Z. (2006). A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals. Sensor Actuator, 128 : 317–326.
  • Cui, H.W., Suganuma, K., & Uchida, H. (2015). Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method, Nano Researc, 8 (5) : 1604-1614.
  • Cui, H.W., Suganuma, K., & Uchida, H. (2015). Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Resarch, 8(5) : 1604-1614.
  • Dias, T., & G.B. Delkumburewatte, G.B. (2007). The influence of moisture content on the thermal conductivity of a knitted structure, Measurement Science and Technology, 18(5) : 1304.
  • Fugetsu, B., Akiba, E., Hachiya, M., & Endo, M. (2009). The production of soft, durable, and electrically conductive polyester multifilament yarns by dye-printing them with carbon nanotubes, Carbon, 47(2) : 527-530.
  • Fugetsu, B., Sano, E., Yu, H., Mori, K., & Tanaka, T. (2010). Graphene oxide as dyestuffs for the creation of electrically conductive fabrics. Carbon, 48 (12) : 3340-3345.
  • Hao, L., Yi, Z., & Li, C. (2012). Development and characterization of flexible heating fabric based on conductive filaments. Measurement, 45 : 1855–1865.
  • Hong, J., Pan, Z., Yao, M., Chen, J., & Zhang, Y. (2016). A large-strain weft-knitted sensor fabricated by conductive UHMWPE/PANI composite yarns”, Sensors and Actuators A-Physical, 238 : 307-316.
  • Hong, J., Pan, Z., Yao, M., Chen, J., & Zhang, Y. (2016). A large-strain weft-knitted sensor fabricated by conductive UHMWPE/PANI composite yarns, Sensors and Actuators A-Physical, 238 : 307-316.
  • https://www.iso.org/obp/ui/#iso:std:iso:8388:ed-1:v1:en; 14.03.2018.
  • J.Kwon, L.H., Seo, J., Shin, S., Koo, J.H., Pang, C., & Lee, T. (2015). Conductive fiber‐based ultrasensitive textile pressure sensor for wearable electronics. Advance Materials, 27(15), (2015): 2433-2439.
  • Jia, L.C., Xu, L., Ren, F., Ren, P.G., Yan, D.X. & Li, Z.M. (2009). Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding, Carbon, 144 : 101-108.
  • Kaynak, A., Najar, S.S. & Foitzik, R.C. (2008). Conducting nylon, cotton and wool yarns by continuous vapor polymerization of pyrrole, Synthetic Metals, 158 (1-2) : 1-5. Marischal, L., Cayla, A., Lemort, G., Campagne, C., & Devaux, E. (2018). Influence of melt spinning parameters on electrical conductivity of carbon fillers filled polyamide 12 composites. Synthetic Metals, 245 : 51-60.
  • Meng, Y., Zhao, Y., Hu, C., Cheng, H., Hu, Y., Zhang, Z., Shi, G., & Qu, L. (2013). All‐graphene core‐sheath microfibers for all‐solid‐state, stretchable fibriform supercapacitors and wearable electronic textiles. Advance Materials, 25(16) : 2326-2331.
  • Mengal, N., Sahito, I.A., Arbab, A.A., Sun, K.C., Qadir, M.B., Memon, A.A., & Jeong, S.H. (2016). Fabrication of a flexible and conductive lyocell fabric decorated with graphene nanosheets as a stable electrode material. Carbohydrate Polymers, 152 : 19-25.
  • Oh, K.W., Park, H.J. & Kim, S.H. (2003). Stretchable conductive fabric for electrotherapy, Journal Applied Polymer Science, 88(5): 1225-1229. Randeniya, L.K., Bendavid, A., Martin, P.J., Tran, C.D. (2010). Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small, 6 (16) : 1806-1811.
  • Soyaslan, D., Comlekci, S., & Goktepe, O. (2010). Determination of electromagnetic shielding performance of plain knitting and 1X1 rib structures with coaxial test fixture relating to ASTM D4935. Journal of Textile Instute, 101 : 890–897.
  • Tao, X. (Ed.), Wearable Electronics and Photonics, (2005), Elsevier Ltd.
  • Weng, W., Chen, P., He, S., Sun, X., & Peng, H. (2016). Smart electronic textiles. Angewandte Chemie International Edition, 55(21): 6140-6169.
  • Wong, W.Y., Lam, J.K.C., Kan, C.W., & Postle, R. (2012). Influence of knitted fabric construction on the ultraviolet protection factor of greige and bleached cotton fabrics. Textile Research Journal, 83(7) : 683-699.
  • Zhao, Y., Tong, J., Yang, C., Chan, Y.F., & Li, L. (2016). A simulation model of electrical resistance applied in designing conductive woven fabrics. Textile Research Journal, 86(16) : 1688-1700.

Örme Kumaşların Elektrik İletkenliğinin Araştırılması

Year 2020, Issue: 20, 854 - 858, 31.12.2020
https://doi.org/10.31590/ejosat.788982

Abstract

Bu çalışmada, iletken kumaşlar paslanmaz çelik iplik kullanılarak örme tekniği ile üretilmiştir. Örme kumaşlar düz, haroşe, 1x1 rip, ve 2x2 rip olmak üzere dört farklı konstriksüyonda üretilmiştir. Örme işleminden sonra numunelerin ilmek iplik uzunluğu, ilmek yoğunluğu, gramjı, kalınlığı, gözenekliliği ve iletkenliği ölçülmüştür. Elde edilen sonuçlara göre, örme parametreleri kumaş konstriksiyonuna göre değişiklik göstermektedir. Ayrıca, kumaş konstriksoyunu numunelerin gözenekliliğini ve elektrik iletkenliğini etkilemektedir. Düz örgü kumaş numunesi diğer numunelere göre daha yüksek gözenekliliğe sahiptir. Tüm örgü yapıları ile karşılaştırıldığında, 2x2 rib örgü kumaş numunesinin elektrik iletkenliği diğer kumaş numunelerinden daha yüksektir.

References

  • Cai, G., Xu, Z., Yang, M., Tang, B., & Wang, G. (2017). Functionalization of cotton fabrics through thermal reduction of graphene oxide. Applied Surface Science, 393 : 441–448.
  • Cheng, K.B., Cheng, T.W., Lee, K.C., Ueng, T.H., & Hsing, W.H. (2003). Effects of yarn constitutions and fabric specifications on electrical properties of hybrid woven fabrics, Composites Part A-Applied Science, 34(10) : 971-978.
  • Choi, S., & Jiang, Z. (2006). A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals. Sensor Actuator, 128 : 317–326.
  • Cui, H.W., Suganuma, K., & Uchida, H. (2015). Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method, Nano Researc, 8 (5) : 1604-1614.
  • Cui, H.W., Suganuma, K., & Uchida, H. (2015). Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Resarch, 8(5) : 1604-1614.
  • Dias, T., & G.B. Delkumburewatte, G.B. (2007). The influence of moisture content on the thermal conductivity of a knitted structure, Measurement Science and Technology, 18(5) : 1304.
  • Fugetsu, B., Akiba, E., Hachiya, M., & Endo, M. (2009). The production of soft, durable, and electrically conductive polyester multifilament yarns by dye-printing them with carbon nanotubes, Carbon, 47(2) : 527-530.
  • Fugetsu, B., Sano, E., Yu, H., Mori, K., & Tanaka, T. (2010). Graphene oxide as dyestuffs for the creation of electrically conductive fabrics. Carbon, 48 (12) : 3340-3345.
  • Hao, L., Yi, Z., & Li, C. (2012). Development and characterization of flexible heating fabric based on conductive filaments. Measurement, 45 : 1855–1865.
  • Hong, J., Pan, Z., Yao, M., Chen, J., & Zhang, Y. (2016). A large-strain weft-knitted sensor fabricated by conductive UHMWPE/PANI composite yarns”, Sensors and Actuators A-Physical, 238 : 307-316.
  • Hong, J., Pan, Z., Yao, M., Chen, J., & Zhang, Y. (2016). A large-strain weft-knitted sensor fabricated by conductive UHMWPE/PANI composite yarns, Sensors and Actuators A-Physical, 238 : 307-316.
  • https://www.iso.org/obp/ui/#iso:std:iso:8388:ed-1:v1:en; 14.03.2018.
  • J.Kwon, L.H., Seo, J., Shin, S., Koo, J.H., Pang, C., & Lee, T. (2015). Conductive fiber‐based ultrasensitive textile pressure sensor for wearable electronics. Advance Materials, 27(15), (2015): 2433-2439.
  • Jia, L.C., Xu, L., Ren, F., Ren, P.G., Yan, D.X. & Li, Z.M. (2009). Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding, Carbon, 144 : 101-108.
  • Kaynak, A., Najar, S.S. & Foitzik, R.C. (2008). Conducting nylon, cotton and wool yarns by continuous vapor polymerization of pyrrole, Synthetic Metals, 158 (1-2) : 1-5. Marischal, L., Cayla, A., Lemort, G., Campagne, C., & Devaux, E. (2018). Influence of melt spinning parameters on electrical conductivity of carbon fillers filled polyamide 12 composites. Synthetic Metals, 245 : 51-60.
  • Meng, Y., Zhao, Y., Hu, C., Cheng, H., Hu, Y., Zhang, Z., Shi, G., & Qu, L. (2013). All‐graphene core‐sheath microfibers for all‐solid‐state, stretchable fibriform supercapacitors and wearable electronic textiles. Advance Materials, 25(16) : 2326-2331.
  • Mengal, N., Sahito, I.A., Arbab, A.A., Sun, K.C., Qadir, M.B., Memon, A.A., & Jeong, S.H. (2016). Fabrication of a flexible and conductive lyocell fabric decorated with graphene nanosheets as a stable electrode material. Carbohydrate Polymers, 152 : 19-25.
  • Oh, K.W., Park, H.J. & Kim, S.H. (2003). Stretchable conductive fabric for electrotherapy, Journal Applied Polymer Science, 88(5): 1225-1229. Randeniya, L.K., Bendavid, A., Martin, P.J., Tran, C.D. (2010). Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small, 6 (16) : 1806-1811.
  • Soyaslan, D., Comlekci, S., & Goktepe, O. (2010). Determination of electromagnetic shielding performance of plain knitting and 1X1 rib structures with coaxial test fixture relating to ASTM D4935. Journal of Textile Instute, 101 : 890–897.
  • Tao, X. (Ed.), Wearable Electronics and Photonics, (2005), Elsevier Ltd.
  • Weng, W., Chen, P., He, S., Sun, X., & Peng, H. (2016). Smart electronic textiles. Angewandte Chemie International Edition, 55(21): 6140-6169.
  • Wong, W.Y., Lam, J.K.C., Kan, C.W., & Postle, R. (2012). Influence of knitted fabric construction on the ultraviolet protection factor of greige and bleached cotton fabrics. Textile Research Journal, 83(7) : 683-699.
  • Zhao, Y., Tong, J., Yang, C., Chan, Y.F., & Li, L. (2016). A simulation model of electrical resistance applied in designing conductive woven fabrics. Textile Research Journal, 86(16) : 1688-1700.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Şeyda Eyüpoğlu 0000-0003-4522-2056

Publication Date December 31, 2020
Published in Issue Year 2020 Issue: 20

Cite

APA Eyüpoğlu, Ş. (2020). Örme Kumaşların Elektrik İletkenliğinin Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(20), 854-858. https://doi.org/10.31590/ejosat.788982