Research Article
BibTex RIS Cite
Year 2020, Issue: 20, 815 - 826, 31.12.2020
https://doi.org/10.31590/ejosat.792365

Abstract

Since nano-sized materials have very large specific surface areas, their chemical activities are quite high. This high reactivity property plays a notable role in improving the different properties of cement-based materials. Besides, a high microstructure density is achieved thanks to the filler effect of these materials and the mechanism of filling the pores. Therefore, the replacement of nanoparticles with cement, even partially, improves its mechanical and durability properties. For this purpose, mortar mixtures were produced using 1%, 3% and 5% halloysite nano-clay, nano-SiO2 and nano-CaO, single and dual, instead of cement. The water/binder ratio was chosen as 0.38 in all mixtures. Compressive strengths of 7, 28 and 60 days, ultrasonic pulse velocity for 28 and 60 days and heat of hydration were determined by the Langavant method of the produced mortar samples. As a result, in the case of using nanomaterials, the compressive strengths of all mixtures both in early and old age have increased. The highest compressive strength was obtained in mixtures containing 3% halloysite nano-clay and 5% nano-CaO. It has been determined that dual use of nanomaterials is not as effective as singular use in compressive strength. Ultrasonic pulse velocity results are in line with strength results. According to the experimental results in the case of using nanomaterials, the hydration heat increased due to the activity of CaO in the samples containing nano-CaO. However, no significant change was obtained in all other mixtures.

References

  • Abd El Aleem, S., Heikal, M., & Morsi, W. M. (2014). Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica. Construction and Building Materials, 59, 151-160. doi:10.1016/j.conbuildmat.2014.02.039
  • Allalou, S., Kheribet , R., & Benmounah, A. (2019). Effects of calcined halloysite nano-clay on the mechanical properties and microstructure of low-clinker cement mortar. Case Studies in Construction Materials, 10, e00213.
  • ASTM C109 / C109M-20b, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens), ASTM International, West Conshohocken, PA, 2020, www.astm.org. (2020). In.
  • ASTM C597-16, Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA, 2016, www.astm.org. (2016). In.
  • Berra, M., Carassiti, F., Mangialardi, T., Paolini, A. E., & Sebastiani, M. (2012). Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Construction and Building Materials, 35, 666-675. doi:10.1016/j.conbuildmat.2012.04.132
  • Erdoğan, Y. T. (2010). Beton, ODTÜ Geliştirme Vakfı Yayını, Ankara.
  • Fan, Y. F., Zhang, S. Y., Wang, Q., & Shah, S. P. (2015). Effects of nano-kaolinite clay on the freeze-thaw resistance of concrete. Cement & Concrete Composites, 62, 1-12. doi:10.1016/j.cemconcomp.2015.05.001
  • Farzadnia, N., Ali, A. A. A., & Demirboga, R. (2013a). Characterization of high strength mortars with nano alumina at elevated temperatures. Cement and Concrete Research, 54, 43-54. doi:10.1016/j.cemconres.2013.08.003
  • Farzadnia, N., Ali, A. A. A., Demirboga, R., & Anwar, M. P. (2013b). Characterization of high strength mortars with nano Titania at elevated temperatures. Construction and Building Materials, 43, 469-479. doi:10.1016/j.conbuildmat.2013.02.044
  • Farzadnia, N., Ali, A. A. A., Demirboga, R., & Anwar, M. P. (2013c). Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. Cement and Concrete Research, 48, 97-104. doi:10.1016/j.cemconres.2013.03.005
  • Feng, P., Chang, H. L., Liu, X., Ye, S. X., Shu, X., & Ran, Q. P. (2020). The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Materials & Design, 186. doi:10.1016/j.matdes.2019.108320
  • Gawwad, H. A. A., Abd El-Aleem, S., & Faried, A. S. (2017). Influence of nano-silica and -metakaolin on the hydration characteristics and microstructure of air-cooled slag-blended cement mortar. Geosystem Engineering, 20(5), 276-285. doi:10.1080/12269328.2017.1323678
  • ACI Committee 234 (1996). Guide for the use of silica fume in concrete. Aci Materials Journal, 93(2), 193-193. Retrieved from <Go to ISI>://WOS:A1996UG60400012
  • Hakamy, A., Shaikh, F. U. A., & Low, I. M. (2015). Characteristics of nanoclay and calcined nanoclay-cement nanocomposites. Composites Part B-Engineering, 78, 174-184. doi:10.1016/j.compositesb.2015.03.074
  • Heikal, M., Abdel-Gawwad, H. A., & Ababneh, F. A. (2018). Positive impact performance of hybrid effect of nano-clay and silica nano-particles on composite cements. Construction and Building Materials, 190, 508-516. doi:10.1016/j.conbuildmat.2018.09.163
  • Heikal, M., Ali, A. I., Ismail, M. N., & Ibrahim, S. A. N. S. (2014). Behavior of composite cement pastes containing silica nano-particles at elevated temperature. Construction and Building Materials, 70, 339-350. doi:10.1016/j.conbuildmat.2014.07.078
  • Heikal, M., & Ibrahim, N. S. (2016). Hydration, microstructure and phase composition of composite cements containing nano-clay. Construction and Building Materials, 112, 19-27. doi:10.1016/j.conbuildmat.2016.02.177
  • Hong, Z. J., Zuo, J. P., Zhang, Z. S., Liu, C., Liu, L., & Liu, H. Y. (2020). Effects of nano-clay on the mechanical and microstructural properties of cement-based grouting material in sodium chloride solution. Construction and Building Materials, 245. doi:UNSP 118420 10.1016/j.conbuildmat.2020.118420
  • Hosseini, P., Booshehrian, A., & Farshchi, S. (2010). Influence of Nano-SiO2 Addition on Microstructure and Mechanical Properties of Cement Mortars for Ferrocement. Transportation Research Record(2141), 15-20. doi:10.3141/2141-04
  • Hou, P., Wang, K., Qian, J., Kawashima, S., Kong, D., & Shah, S. P. (2012). Effects of colloidal nano SiO2 on fly ash hydration. Cement & Concrete Composites, 34(10), 1095-1103.
  • Jo, B. W., Kim, C. H., & Lim, J. H. (2007). Characteristics of cement mortar with nano-SiO2 particles. Aci Materials Journal, 104(4), 404-407. Retrieved from <Go to ISI>://WOS:000248435900009
  • Kara, C. (2020). Nano SiO2 Katkılı Çimento Harçlarının Mekanik Özelliklerine Yüksek Sıcaklığın Etkisi. Avrupa Bilim ve Teknoloji Dergisi, 19, 247-253. doi:10.31590/ejosat.722814
  • Kurdowski, W., & Nocunwczelik, W. (1983). The Tricalcium Silicate Hydration in the Presence of Active Silica. Cement and Concrete Research, 13(3), 341-348. doi:Doi 10.1016/0008-8846(83)90033-9
  • Li, G. Y. (2004). Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research, 34(6), 1043-1049. doi:10.1016/j.cemconres.2003.11.013
  • Li, W. G., Huang, Z. Y., Cao, F. L., Sun, Z. H., & Shah, S. P. (2015). Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix. Construction and Building Materials, 95, 366-374. doi:10.1016/j.conbuildmat.2015.05.137
  • Liu, R., Xiao, H. G., Geng, J. S., Du, J. J., & Liu, M. (2020). Effect of nano-CaCO3 and nano-SiO2 on improving the properties of carbon fibre-reinforced concrete and their pore-structure models. Construction and Building Materials, 244. doi:10.1016/j.conbuildmat.2020.118297
  • Madandoust, R., Mohseni, E., Mousavi, S. Y., & Namnevis, M. (2015). An experimental investigation on the durability of self-compacting mortar containing nano-SiO2, nano-Fe2O3 and nano-CuO. Construction and Building Materials, 86, 44-50. doi:10.1016/j.conbuildmat.2015.03.100
  • Mohseni, E., Miyandehi, B. M., Yang, J., & Yazdi, M. A. (2015). Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash. Construction and Building Materials, 84, 331-340. doi:10.1016/j.conbuildmat.2015.03.006
  • Morsy, M. S., Alsayed, S. H., & Aqel, M. (2011). Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Construction and Building Materials, 25(1), 145-149. doi:10.1016/j.conbuildmat.2010.06.046
  • Oltulu, M., & Sahin, R. (2011). Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 528(22-23), 7012-7019. doi:10.1016/j.msea.2011.05.054
  • Polat, R. (2013). Genleştirilmiş perlit agregası, nano ve mikro boyutta CaO ve MgO ve kil’in yüksek mukavemetli betonların otojen rötreleri üzerindeki etkisi. (Doktora Tezi Doktora Tezi). Ataturk Üniversitesi,
  • Polat, R., Demirboga, R., & Karagol, F. (2017). The effect of nano-MgO on the setting time, autogenous shrinkage, microstructure and mechanical properties of high performance cement paste and mortar. Construction and Building Materials, 156, 208-218. doi:10.1016/j.conbuildmat.2017.08.168
  • Polat, R., Demirboga, R., & Karagol, F. (2019). Mechanical and physical behavior of cement paste and mortar incorporating nano-CaO. Structural Concrete, 20(1), 361-370. doi:10.1002/suco.201800132
  • Polat, R., Demirboga, R., & Khushefati, W. H. (2015). Effects of nano and micro size of CaO and MgO, nano-clay and expanded perlite aggregate on the autogenous shrinkage of mortar. Construction and Building Materials, 81, 268-275. doi:10.1016/j.conbuildmat.2015.02.032
  • Reches, Y. (2018). Nanoparticles as concrete additives: Review and perspectives. Construction and Building Materials, 175, 483-495. doi:10.1016/j.conbuildmat.2018.04.214
  • Rong, Z. D., Sun, W., Xiao, H. J., & Jiang, G. (2015). Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cement & Concrete Composites, 56, 25-31. doi:10.1016/j.cemconcomp.2014.11.001
  • Said, A. M., Zeidan, M. S., Bassuoni, M. T., & Tian, Y. (2012). Properties of concrete incorporating nano-silica. Construction and Building Materials, 36, 838-844. doi:10.1016/j.conbuildmat.2012.06.044
  • Senff, L., Hotza, D., Lucas, S., Ferreira, V. M., & Labrincha, J. A. (2012). Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 532, 354-361. doi:10.1016/j.msea.2011.10.102
  • Shaikh, F., Chavda, V., Minhaj, N., & Arel, H. S. (2018). Effect of mixing methods of nano silica on properties of recycled aggregate concrete. Structural Concrete, 19(2), 387-399. doi:10.1002/suco.201700091
  • Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S. (2013). Beneficial role of nanosilica in cement based materials - A review. Construction and Building Materials, 47, 1069-1077. doi:10.1016/j.conbuildmat.2013.05.052
  • Stefanidou, M., & Papayianni, I. (2012). Influence of nano-SiO2 on the Portland cement pastes. Composites Part B-Engineering, 43(6), 2706-2710. doi:10.1016/j.compositesb.2011.12.015
  • Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K. H., & Alnahhal, M. F. (2017). Incorporation of nano-materials in cement composite and geopolymer based paste and mortar - A review. Construction and Building Materials, 148, 62-84. doi:10.1016/j.conbuildmat.2017.04.206
  • Sun, K. K., Peng, X. Q., Wang, S. P., Zeng, L., Ran, P., & Ji, G. X. (2020). Effect of nano-SiO2 on the efflorescence of an alkali-activated metakaolin mortar. Construction and Building Materials, 253. doi:10.1016/j.conbuildmat.2020.118952
  • TS EN 196-1. Çimento deney metotları - Bölüm 1: Dayanım tayini. (2016). In: Türk Standartları Enstitüsü.
  • TS EN 196-9. Çimento deney yöntemleri - Bölüm 9: Hidratasyon ısısı - Yarı adyabatik yöntem. (2011). In.
  • TS EN 197-1-Çimento - Bölüm 1: Genel çimentolar - Bileşim, özellikler ve uygunluk kriterleri. (2012). In. Turkey: Türk Standartları Enstitüsü.
  • TS EN 12390-1. Beton - Sertleşmiş beton deneyleri - Bölüm 1: Deney numunesi ve kalıplarının şekil, boyut ve diğer özellikleri. (2013). In: Türk Standartları Enstitüsü.
  • Ye, Q., Zhang, Z. N., Kong, D. Y., & Chen, R. S. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and Building Materials, 21(3), 539-545. doi:10.1016/j.conbuildmat.2005.09.001
  • Yu, J., Zhang, M., Li, G. Y., Meng, J., & Leung, C. K. Y. (2020). Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar. Construction and Building Materials, 239. doi:10.1016/j.conbuildmat.2019.117853
  • Zahedi, M., Ramezanianpour, A. A., & Ramezanianpour, A. M. (2015). Evaluation of the mechanical properties and durability of cement mortars containing nanosilica and rice husk ash under chloride ion penetration. Construction and Building Materials, 78, 354-361. doi:10.1016/j.conbuildmat.2015.01.045.

Halloysit Nano-Kil, Nano-SiO2 ve Nano-CaO’in Tekli ve İkili Kullanımının Çimento Esaslı Harçların Özelliklerine Etkileri

Year 2020, Issue: 20, 815 - 826, 31.12.2020
https://doi.org/10.31590/ejosat.792365

Abstract

Nano boyutlu malzemeler çok büyük özgül yüzey alanlarına sahip oldukları için kimyasal aktiviteleri oldukça yüksektir. Bu yüksek reaktivite özelliği, çimento esaslı malzemelerin farklı özelliklerinin geliştirilmesinde dikkate değer bir rol oynamaktadır. Ayrıca bu malzemelerin filler etkisi ile gözenekleri doldurma mekanizmaları sayesinde yüksek mikro-yapı yoğunluğu elde edilmektedir. Bu sebeple nano parçacıkların kısmen de olsa çimento ile yer değiştirmesi mekanik ve durabilite özelliklerini geliştirmektedir. Bu amaçla, çimento yerine toplam bağlayıcı ağırlığının %1, %3 ve %5’i oranlarında halloysit nano-kil, nano-SiO2 ve nano-CaO, tekli ve ikili kullanılarak harç karışımları üretilmiştir. Tüm karışımlarda su/bağlayıcı oranı ise 0.38 olarak seçilmiştir. Üretilen harç numunelerin, 7, 28 ve 60 günlük basınç dayanımları, 28 ve 60 günlük ultrases geçiş hızları ve Langavant yöntemi ile hidratasyon ısısı değerleri tespit edilmiştir. Sonuç olarak, nano malzeme kullanılması durumunda tüm karışımların hem erken yaş hem de ileri yaş basınç dayanımları artmıştır. En yüksek basınç dayanımı %3 halloysit nano-kil ve %5 nano-CaO içeren karışımlarda elde edilmiştir. Nano malzemelerin ikili kullanımının, basınç dayanımında tekli kullanım kadar etkili olmadığı tespit edilmiştir. Ultrases geçiş hızları sonuçları, dayanım sonuçları ile paralellik göstermektedir. Nano malzeme kullanılması durumunda hidratasyon ısılarında, nano-CaO içeren numunelerde CaO’in aktivitesinden dolayı artış gözlenmiştir fakat diğer tüm karışımlarda çok önemli bir değişiklik elde edilmemiştir.

References

  • Abd El Aleem, S., Heikal, M., & Morsi, W. M. (2014). Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica. Construction and Building Materials, 59, 151-160. doi:10.1016/j.conbuildmat.2014.02.039
  • Allalou, S., Kheribet , R., & Benmounah, A. (2019). Effects of calcined halloysite nano-clay on the mechanical properties and microstructure of low-clinker cement mortar. Case Studies in Construction Materials, 10, e00213.
  • ASTM C109 / C109M-20b, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens), ASTM International, West Conshohocken, PA, 2020, www.astm.org. (2020). In.
  • ASTM C597-16, Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA, 2016, www.astm.org. (2016). In.
  • Berra, M., Carassiti, F., Mangialardi, T., Paolini, A. E., & Sebastiani, M. (2012). Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Construction and Building Materials, 35, 666-675. doi:10.1016/j.conbuildmat.2012.04.132
  • Erdoğan, Y. T. (2010). Beton, ODTÜ Geliştirme Vakfı Yayını, Ankara.
  • Fan, Y. F., Zhang, S. Y., Wang, Q., & Shah, S. P. (2015). Effects of nano-kaolinite clay on the freeze-thaw resistance of concrete. Cement & Concrete Composites, 62, 1-12. doi:10.1016/j.cemconcomp.2015.05.001
  • Farzadnia, N., Ali, A. A. A., & Demirboga, R. (2013a). Characterization of high strength mortars with nano alumina at elevated temperatures. Cement and Concrete Research, 54, 43-54. doi:10.1016/j.cemconres.2013.08.003
  • Farzadnia, N., Ali, A. A. A., Demirboga, R., & Anwar, M. P. (2013b). Characterization of high strength mortars with nano Titania at elevated temperatures. Construction and Building Materials, 43, 469-479. doi:10.1016/j.conbuildmat.2013.02.044
  • Farzadnia, N., Ali, A. A. A., Demirboga, R., & Anwar, M. P. (2013c). Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. Cement and Concrete Research, 48, 97-104. doi:10.1016/j.cemconres.2013.03.005
  • Feng, P., Chang, H. L., Liu, X., Ye, S. X., Shu, X., & Ran, Q. P. (2020). The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Materials & Design, 186. doi:10.1016/j.matdes.2019.108320
  • Gawwad, H. A. A., Abd El-Aleem, S., & Faried, A. S. (2017). Influence of nano-silica and -metakaolin on the hydration characteristics and microstructure of air-cooled slag-blended cement mortar. Geosystem Engineering, 20(5), 276-285. doi:10.1080/12269328.2017.1323678
  • ACI Committee 234 (1996). Guide for the use of silica fume in concrete. Aci Materials Journal, 93(2), 193-193. Retrieved from <Go to ISI>://WOS:A1996UG60400012
  • Hakamy, A., Shaikh, F. U. A., & Low, I. M. (2015). Characteristics of nanoclay and calcined nanoclay-cement nanocomposites. Composites Part B-Engineering, 78, 174-184. doi:10.1016/j.compositesb.2015.03.074
  • Heikal, M., Abdel-Gawwad, H. A., & Ababneh, F. A. (2018). Positive impact performance of hybrid effect of nano-clay and silica nano-particles on composite cements. Construction and Building Materials, 190, 508-516. doi:10.1016/j.conbuildmat.2018.09.163
  • Heikal, M., Ali, A. I., Ismail, M. N., & Ibrahim, S. A. N. S. (2014). Behavior of composite cement pastes containing silica nano-particles at elevated temperature. Construction and Building Materials, 70, 339-350. doi:10.1016/j.conbuildmat.2014.07.078
  • Heikal, M., & Ibrahim, N. S. (2016). Hydration, microstructure and phase composition of composite cements containing nano-clay. Construction and Building Materials, 112, 19-27. doi:10.1016/j.conbuildmat.2016.02.177
  • Hong, Z. J., Zuo, J. P., Zhang, Z. S., Liu, C., Liu, L., & Liu, H. Y. (2020). Effects of nano-clay on the mechanical and microstructural properties of cement-based grouting material in sodium chloride solution. Construction and Building Materials, 245. doi:UNSP 118420 10.1016/j.conbuildmat.2020.118420
  • Hosseini, P., Booshehrian, A., & Farshchi, S. (2010). Influence of Nano-SiO2 Addition on Microstructure and Mechanical Properties of Cement Mortars for Ferrocement. Transportation Research Record(2141), 15-20. doi:10.3141/2141-04
  • Hou, P., Wang, K., Qian, J., Kawashima, S., Kong, D., & Shah, S. P. (2012). Effects of colloidal nano SiO2 on fly ash hydration. Cement & Concrete Composites, 34(10), 1095-1103.
  • Jo, B. W., Kim, C. H., & Lim, J. H. (2007). Characteristics of cement mortar with nano-SiO2 particles. Aci Materials Journal, 104(4), 404-407. Retrieved from <Go to ISI>://WOS:000248435900009
  • Kara, C. (2020). Nano SiO2 Katkılı Çimento Harçlarının Mekanik Özelliklerine Yüksek Sıcaklığın Etkisi. Avrupa Bilim ve Teknoloji Dergisi, 19, 247-253. doi:10.31590/ejosat.722814
  • Kurdowski, W., & Nocunwczelik, W. (1983). The Tricalcium Silicate Hydration in the Presence of Active Silica. Cement and Concrete Research, 13(3), 341-348. doi:Doi 10.1016/0008-8846(83)90033-9
  • Li, G. Y. (2004). Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research, 34(6), 1043-1049. doi:10.1016/j.cemconres.2003.11.013
  • Li, W. G., Huang, Z. Y., Cao, F. L., Sun, Z. H., & Shah, S. P. (2015). Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix. Construction and Building Materials, 95, 366-374. doi:10.1016/j.conbuildmat.2015.05.137
  • Liu, R., Xiao, H. G., Geng, J. S., Du, J. J., & Liu, M. (2020). Effect of nano-CaCO3 and nano-SiO2 on improving the properties of carbon fibre-reinforced concrete and their pore-structure models. Construction and Building Materials, 244. doi:10.1016/j.conbuildmat.2020.118297
  • Madandoust, R., Mohseni, E., Mousavi, S. Y., & Namnevis, M. (2015). An experimental investigation on the durability of self-compacting mortar containing nano-SiO2, nano-Fe2O3 and nano-CuO. Construction and Building Materials, 86, 44-50. doi:10.1016/j.conbuildmat.2015.03.100
  • Mohseni, E., Miyandehi, B. M., Yang, J., & Yazdi, M. A. (2015). Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash. Construction and Building Materials, 84, 331-340. doi:10.1016/j.conbuildmat.2015.03.006
  • Morsy, M. S., Alsayed, S. H., & Aqel, M. (2011). Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Construction and Building Materials, 25(1), 145-149. doi:10.1016/j.conbuildmat.2010.06.046
  • Oltulu, M., & Sahin, R. (2011). Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 528(22-23), 7012-7019. doi:10.1016/j.msea.2011.05.054
  • Polat, R. (2013). Genleştirilmiş perlit agregası, nano ve mikro boyutta CaO ve MgO ve kil’in yüksek mukavemetli betonların otojen rötreleri üzerindeki etkisi. (Doktora Tezi Doktora Tezi). Ataturk Üniversitesi,
  • Polat, R., Demirboga, R., & Karagol, F. (2017). The effect of nano-MgO on the setting time, autogenous shrinkage, microstructure and mechanical properties of high performance cement paste and mortar. Construction and Building Materials, 156, 208-218. doi:10.1016/j.conbuildmat.2017.08.168
  • Polat, R., Demirboga, R., & Karagol, F. (2019). Mechanical and physical behavior of cement paste and mortar incorporating nano-CaO. Structural Concrete, 20(1), 361-370. doi:10.1002/suco.201800132
  • Polat, R., Demirboga, R., & Khushefati, W. H. (2015). Effects of nano and micro size of CaO and MgO, nano-clay and expanded perlite aggregate on the autogenous shrinkage of mortar. Construction and Building Materials, 81, 268-275. doi:10.1016/j.conbuildmat.2015.02.032
  • Reches, Y. (2018). Nanoparticles as concrete additives: Review and perspectives. Construction and Building Materials, 175, 483-495. doi:10.1016/j.conbuildmat.2018.04.214
  • Rong, Z. D., Sun, W., Xiao, H. J., & Jiang, G. (2015). Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cement & Concrete Composites, 56, 25-31. doi:10.1016/j.cemconcomp.2014.11.001
  • Said, A. M., Zeidan, M. S., Bassuoni, M. T., & Tian, Y. (2012). Properties of concrete incorporating nano-silica. Construction and Building Materials, 36, 838-844. doi:10.1016/j.conbuildmat.2012.06.044
  • Senff, L., Hotza, D., Lucas, S., Ferreira, V. M., & Labrincha, J. A. (2012). Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 532, 354-361. doi:10.1016/j.msea.2011.10.102
  • Shaikh, F., Chavda, V., Minhaj, N., & Arel, H. S. (2018). Effect of mixing methods of nano silica on properties of recycled aggregate concrete. Structural Concrete, 19(2), 387-399. doi:10.1002/suco.201700091
  • Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S. (2013). Beneficial role of nanosilica in cement based materials - A review. Construction and Building Materials, 47, 1069-1077. doi:10.1016/j.conbuildmat.2013.05.052
  • Stefanidou, M., & Papayianni, I. (2012). Influence of nano-SiO2 on the Portland cement pastes. Composites Part B-Engineering, 43(6), 2706-2710. doi:10.1016/j.compositesb.2011.12.015
  • Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K. H., & Alnahhal, M. F. (2017). Incorporation of nano-materials in cement composite and geopolymer based paste and mortar - A review. Construction and Building Materials, 148, 62-84. doi:10.1016/j.conbuildmat.2017.04.206
  • Sun, K. K., Peng, X. Q., Wang, S. P., Zeng, L., Ran, P., & Ji, G. X. (2020). Effect of nano-SiO2 on the efflorescence of an alkali-activated metakaolin mortar. Construction and Building Materials, 253. doi:10.1016/j.conbuildmat.2020.118952
  • TS EN 196-1. Çimento deney metotları - Bölüm 1: Dayanım tayini. (2016). In: Türk Standartları Enstitüsü.
  • TS EN 196-9. Çimento deney yöntemleri - Bölüm 9: Hidratasyon ısısı - Yarı adyabatik yöntem. (2011). In.
  • TS EN 197-1-Çimento - Bölüm 1: Genel çimentolar - Bileşim, özellikler ve uygunluk kriterleri. (2012). In. Turkey: Türk Standartları Enstitüsü.
  • TS EN 12390-1. Beton - Sertleşmiş beton deneyleri - Bölüm 1: Deney numunesi ve kalıplarının şekil, boyut ve diğer özellikleri. (2013). In: Türk Standartları Enstitüsü.
  • Ye, Q., Zhang, Z. N., Kong, D. Y., & Chen, R. S. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and Building Materials, 21(3), 539-545. doi:10.1016/j.conbuildmat.2005.09.001
  • Yu, J., Zhang, M., Li, G. Y., Meng, J., & Leung, C. K. Y. (2020). Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar. Construction and Building Materials, 239. doi:10.1016/j.conbuildmat.2019.117853
  • Zahedi, M., Ramezanianpour, A. A., & Ramezanianpour, A. M. (2015). Evaluation of the mechanical properties and durability of cement mortars containing nanosilica and rice husk ash under chloride ion penetration. Construction and Building Materials, 78, 354-361. doi:10.1016/j.conbuildmat.2015.01.045.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Abdul Wakil Qarluq This is me 0000-0002-9822-7697

Rıza Polat 0000-0002-8990-035X

Fatma Fatma Karagöl 0000-0003-1760-1972

Publication Date December 31, 2020
Published in Issue Year 2020 Issue: 20

Cite

APA Qarluq, A. W., Polat, R., & Fatma Karagöl, F. (2020). Halloysit Nano-Kil, Nano-SiO2 ve Nano-CaO’in Tekli ve İkili Kullanımının Çimento Esaslı Harçların Özelliklerine Etkileri. Avrupa Bilim Ve Teknoloji Dergisi(20), 815-826. https://doi.org/10.31590/ejosat.792365