Research Article
BibTex RIS Cite

Numerical Analysis of an Electromagnetic Plunger

Year 2020, Ejosat Special Issue 2020 (ICCEES), 170 - 175, 05.10.2020
https://doi.org/10.31590/ejosat.803129

Abstract

A linear electromagnetic plunger device generates linear force in the direction of the motion of the plunger. One of the essential components of the system is the core. The core is winded by conductor wires and the wires are energized by a power source. In this way the core windings produce magnetic flux by the help of the currents carried through the conductor wires. The generated magnetic flux navigates through the core component to the pertinent direction. By this way the directed magnetic flux generates motion on the plunger. This mechanism has wide application fields in automotive industry and machinery especially for areas commonly requiring a controlled actuator motion. There is limited range of opportunities to illustrate physical phenomena related to electromagnetics. Particularly in electromagnetics, it is so useful to use computational methods for illustrating phenomena about electromechanical conversion calculations of force in a magnetic circuit. For this purpose, it is practical to make use of a software such as EMWorks. Via EMWorks software, force in a magnetic circuit and current density distribution can be calculated and the results of numerical results can be presented in an automated manner. The mechanism of the plunger system involves electric energy conversion into magnetic force energy. The overall workflow is nothing but an electromagnetic energy conversion. One of the essential advantages of an electromagnetic plunger is that it can easily be controlled by an electric control and the response time of the plunger system is quite applicable for industrial applications. In this study, the main goal is to obtain magnetic flux density distribution yielding a generated force. Using the force generation calculation, the decision of the magnitude of current required can be obtained. Which amount of elecrtic current will result in how much force generation on the plunger, is the aim of this study. The EMWorks simulation software is used in this study to perform the electromagnetic simulations.

References

  • Benhama et al. (2000). A Virtual work approach to the computation of magnetic force distribution from finite element field solutions. IEE Proceedings-Electric Power Applications, 147(6), 437-442.
  • Boldea & Nasar. (1999). Linear electric actuators and generators. IEEE Transactions on Energy Conversion,, 14(3), 712-717.
  • Boldea et al. (2017). Linear electric machines, drives, and MAGLEVs: an overview. IEEE Transactions on Industrial Electronics, 7504-7515.
  • Guckel et al. (1996). Electromagnetic linear actuators with inductive position sensing. Sensors and Actuators A: Physical, 386-391.
  • McFee et al. (1988). A tunable volume integration formulation for force calculation in finite-element based computational magnetostatics. IEEE Transactions on Magnetics, 24, 439-442.
  • Melkebeek & Vandevelde . (2001). A survey of magnetic force distributions based on different magnetization models and on the virtual work principle. IEEE Transactions on Magnetics, 3405-3409.
  • Nogueira. (2009). Computation of forces using mean and difference potentials. Proc. of the 17th Conference on the Computation of Electromagnetic Fields.
  • Nogueira. (2011). Analysis of magnetic force production in slider actuators combining analytical and finite element methods. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 10(1), 243-250.
  • Song & Lee. (2015). Design of a solenoid actuator with a magnetic plunger for miniaturized segment robots. Applied sciences, 595-607.
  • Theobald et al. (1994). Control of engine load via electromagnetic valve actuators. Record of SAE International, 1323-1334.

Elektromanyetik Bir İticinin Sayısal Analizi

Year 2020, Ejosat Special Issue 2020 (ICCEES), 170 - 175, 05.10.2020
https://doi.org/10.31590/ejosat.803129

Abstract

Doğrusal bir elektromanyetik itici cihazı, pistonun hareket yönünde doğrusal bir kuvvet üretir. Sistemin temel bileşenlerinden biri nüvedir. Nüve, iletken tellerle sarılır ve tellere bir güç kaynağı tarafından enerji verilir. Bu şekilde nüvedeki sargılar, iletken teller aracılığıyla taşınan akımlar yardımıyla manyetik akı üretir. Üretilen manyetik akı, nüve bileşeni boyunca ilgili yöne doğru ilerler. Bu şekilde yönlendirilmiş manyetik akı, piston üzerinde hareket üretir. Bu mekanizma, otomotiv endüstrisinde ve özellikle kontrollü bir tahrik hareketi gerektiren alanlar için makinelerde geniş uygulama alanlarına sahiptir. Elektromanyetik ile ilgili fiziksel olayları açıklamak için sınırlı sayıda fırsat vardır. Özellikle elektromanyetikte, manyetik bir devrede elektromekanik dönüşüm hesaplamaları hakkındaki olguyu açıklamak için hesaplama yöntemlerini kullanmak çok faydalıdır. Bu amaçla EMWorks gibi yazılımlardan yararlanmak pratiktir. EMWorks yazılımı aracılığıyla, bir manyetik devredeki kuvvet ve akım yoğunluğu dağılımı hesaplanabilir ve sayısal sonuçların sonuçları otomatik bir şekilde sunulabilir. Pistonlu sistemin mekanizması, elektrik enerjisinin manyetik kuvvet enerjisine dönüştürülmesini içerir. Genel iş akışı, basitçe bir elektromanyetik enerji dönüşümüdür. Elektromanyetik bir pistonun temel avantajlarından biri, bir elektrik kontrolüyle kolayca kontrol edilebilmesi ve piston sisteminin tepki süresinin endüstriyel uygulamalar için oldukça uygulanabilir olmasıdır. Bu çalışmada, temel amaç, istenen kuvveti üretebilen manyetik akı yoğunluğu dağılımını elde etmektir. Kuvvet üretimi hesaplamaları kullanılarak, gerekli akımın büyüklüğüne karar verilebilir. Bu çalışmanın amacı, piston üzerinde istenen kuvvet oluşumuna neden olacak elektrik akımının hesaplamaktır. EMWorks simülasyon yazılımı yardımyla bu çalışmada elektromanyetik simülasyonları gerçekleştirilmiştir.

References

  • Benhama et al. (2000). A Virtual work approach to the computation of magnetic force distribution from finite element field solutions. IEE Proceedings-Electric Power Applications, 147(6), 437-442.
  • Boldea & Nasar. (1999). Linear electric actuators and generators. IEEE Transactions on Energy Conversion,, 14(3), 712-717.
  • Boldea et al. (2017). Linear electric machines, drives, and MAGLEVs: an overview. IEEE Transactions on Industrial Electronics, 7504-7515.
  • Guckel et al. (1996). Electromagnetic linear actuators with inductive position sensing. Sensors and Actuators A: Physical, 386-391.
  • McFee et al. (1988). A tunable volume integration formulation for force calculation in finite-element based computational magnetostatics. IEEE Transactions on Magnetics, 24, 439-442.
  • Melkebeek & Vandevelde . (2001). A survey of magnetic force distributions based on different magnetization models and on the virtual work principle. IEEE Transactions on Magnetics, 3405-3409.
  • Nogueira. (2009). Computation of forces using mean and difference potentials. Proc. of the 17th Conference on the Computation of Electromagnetic Fields.
  • Nogueira. (2011). Analysis of magnetic force production in slider actuators combining analytical and finite element methods. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 10(1), 243-250.
  • Song & Lee. (2015). Design of a solenoid actuator with a magnetic plunger for miniaturized segment robots. Applied sciences, 595-607.
  • Theobald et al. (1994). Control of engine load via electromagnetic valve actuators. Record of SAE International, 1323-1334.
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Önder Sönmez 0000-0003-3356-5334

Onur Karaman 0000-0003-3672-1865

Publication Date October 5, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (ICCEES)

Cite

APA Sönmez, Ö., & Karaman, O. (2020). Numerical Analysis of an Electromagnetic Plunger. Avrupa Bilim Ve Teknoloji Dergisi170-175. https://doi.org/10.31590/ejosat.803129